搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学共振增强的表面铯激活银纳米结构光阴极

彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军

引用本文:
Citation:

光学共振增强的表面铯激活银纳米结构光阴极

彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军

Optical resonance enhanced Cs activated nano-structured Ag photocathode

Peng Xin-Cun, Wang Zhi-Dong, Deng Wen-Juan, Zhu Zhi-Fu, Zou Ji-Jun, Zhang Yi-Jun
PDF
HTML
导出引用
  • 金属光阴极因其超短脉冲发射和运行寿命长的特性从而具有重要应用价值, 但是较高的功函数和较强的电子散射使其需要采用高能量紫外光子激发且光电发射量子效率极低. 本文利用Mie散射共振效应增强银纳米颗粒中的局域光学态密度, 提升光吸收率和电子的输运效率, 并利用激活层降低银的功函数, 从而增强光阴极在可见光区的量子效率. 采用时域有限差分方法分析银纳米球阵列的光学共振特性, 采用磁控溅射和退火工艺在银/氧化锡铟复合衬底上制备银纳米球, 紧接着在其表面沉积制备铯激活层, 最后在高真空腔体中测试光电发射量子效率. 实验结果表明平均粒径150 nm的银纳米球光阴极在425 nm波长的量子效率超过0.35%, 为相同激活条件下银薄膜光阴极的12倍, 峰值波长与理论计算的Mie共振波长相符合.
    Metallic photocathodes have drawn attention due to their outstanding performances of ultrafast photoelectric response and long operational lifetime. However, due to their high work function and the large number of scattering events, metallic photocathodes typically are driven by ultraviolet laser pulses and characterized by low intrinsic quantum efficiency (QE). In this work, a new type of Mie-type silver (Ag) nano-sphere resonant structure fabricated on an Ag/ITO composite substrate is used to enhance the photocathode QE, where Mie scattering resonance is used to enhance the local density of optical state and then to improve the light absorption and electron transporting efficiency in Ag nano-spheres. The cesium (Cs) activation layer is also used to lower the electron work function and then to excite photoemission in the visible waveband for Ag photocathode. The optical characteristics of Ag nano-sphere arrays are analyzed by using finite difference time domain method. For the investigated Ag nano-sphere array, theoretical results show that Mie-type electric dipole resonance modes can be obtained over the 400–600 nm waveband by adjusting the sphere diameter, and the large resonance-enhanced absorption can be achieved in nanospheres at the resonance wavelength. The Ag nano-spheres are fabricated on the Ag/ITO substrate by magnetron sputtering and annealing process, then the Cs activation layer is deposited on surface, and finally QE is measured in an ultra-high vacuum test apparatus. Experimental results show that over 0.35% of QE is obtained for Ag nano-sphere particle (with a diameter of 150 nm) at a wavelength of 425 nm, and the wavelength positions of QE maxima are in agreement with Mie resonance for corresponding geometry predicted from the computational model. Given these unique optoelectronic properties, Ag nanophotonic resonance structured photocathodes represent a very promising alternative to photocathodes with flat surfaces that are widely used in many applications today.
      通信作者: 邹继军, jjzou@ecit.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(61204071,11875012, 61661002)
      Corresponding author: Zou Ji-Jun, jjzou@ecit.cn
    [1]

    Zhang Y, Qian y, Feng C, Shi F, Cheng H, Zou J, Zhang J, Zhang X 2017 Opt. Mater. Express 7 3456Google Scholar

    [2]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [3]

    Karkare S, Boulet L, Cultrera L, Dunham B, Liu X, Schaff W, Bazarov I 2014 Phys. Rev. Lett. 112 097601Google Scholar

    [4]

    Hernandez G C, Poelker M, Hansknecht J 2016 IEEE Trans. Dielectr. Electr. Insul. 23 418Google Scholar

    [5]

    Xiang R, Teichert J 2015 Phys. Procedia 77 58Google Scholar

    [6]

    Pasmans P L E M, van Vugt D C, van Lieshout J P, Brussaard G J H, Luiten O J 2016 Phys. Rev. Accel. Beams 19 103403Google Scholar

    [7]

    Musumeci P, Moody J T, England R J, Rosenzweig J B, Tran T 2008 Phys. Rev. Lett. 100 244801Google Scholar

    [8]

    Xiang R, Arnold A, Michel P, Murcek P, Teichert J, Lu P, Vennekate H 2016 Proceedings of the 7th International Particle Accelerator Conference Busan, Korea, May 8−13, 2016 p3928

    [9]

    Barday R, Burrill A, Jankowiak A, Kamps T, Knobloch J, Kugeler O, Matveenko A, Neumann A, Schmeißer M, Völker J, Kneisel P, Nietubyc R, Schubert S, Smedley J, Sekutowicz J, Will I 2013 Phys. Rev. ST Accel. Beams 16 123402

    [10]

    Camino B, Noakes T C Q, Surman M, Seddon E A, Harrison N M 2016 Comput. Mater. Sci. 122 331Google Scholar

    [11]

    Lorusso A 2013 Appl. Phys. A 110 869Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Methods A 622 685Google Scholar

    [13]

    Sheldon M T, Groep J, Brown A M, Polman A, Atwater H A 2014 Science 346 828Google Scholar

    [14]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472

    [15]

    Vilayurganapathy S, Nandasiri M I, Joly A G, El-Khoury P Z, Varga T, Coffey G, Schwenzer B, Pandey A, Kayani A, Hess W P, Thevuthasan S 2013 Appl. Phys. Lett. 103 161112Google Scholar

    [16]

    An C, Zhu R, Xu J, Liu Y, Hu X, Zhang J, Yu D 2018 AIP Adv. 8 055225Google Scholar

    [17]

    Li R K, To H, Andonian G, Feng J, Polyakov A, Scoby C M, Thompson K, Wan W, Padmore H A, Musumeci P 2013 Phys. Rev. Lett. 110 074801Google Scholar

    [18]

    Polyakov A, Senft C, Thompson K F, Feng J, Cabrini S, Schuck P J, Padmore H A, Peppernick S J, Hess W P 2013 Phys. Rev. Lett. 110 076802Google Scholar

    [19]

    Polyakov A, Cabrini S, Dhuey S, Harteneck B, Schuck P J, Padmore H A 2011 Appl. Phys. Lett. 98 203104Google Scholar

    [20]

    Baryshev S V, Antipov S, Kanareykin A D, Techlabs E, Savina M R, Zinovev A V, Thimsen E 2014 Proceedings of the 5th International Particle Accelerator Conference Dresden, Germany, June 15−20, 2014 p739

    [21]

    Nolle E L, Khavin Y B, Schelev M Y 2005 Proc. of SPIE 5580 424Google Scholar

    [22]

    Nolle E L and Schelev M Y 2004 Tech. Phys. Lett. 30 304Google Scholar

    [23]

    Droubay T C, Chambers S A, Joly A G, Hess W P, Németh K, Harkay K C, Spentzouris L 2014 Phys. Rev. Lett. 112 067601Google Scholar

    [24]

    König T, Simon G H, Rust H -P, Heyde M 2009 J. Phys. Chem. C 113 11301

    [25]

    He W, Vilayurganapathy S, Joly A G, Droubay T C, Chambers S A 2013 Appl. Phys. Lett. 102 071604Google Scholar

    [26]

    Ge X, Zou J, Deng W, Peng X, Wang W, Jiang S, Ding X, Chen Z, Zhang Y, Chang B 2015 Mater. Res. Express 2 095015Google Scholar

    [27]

    Spicer W E 1977 Appl. Phys. 12 115Google Scholar

    [28]

    Evlyukhin A B, Reinhardt C, Seidel A, Luk’yanchuk B S, Chichkov B N 2010 Phys. Rev. B 82 045404Google Scholar

    [29]

    江智宇, 王子仪, 王金金, 张荣君, 郑玉祥, 陈良尧, 王松有 2016 65 207802Google Scholar

    Jiang Z Y, Wang Z Y, Wang J J, Zhang R J, Zheng Y X, Chen L Y, Wang S Y 2016 Acta Phys. Sin. 65 207802Google Scholar

    [30]

    Huang Y, Ringe E, Hou M, Ma L, Zhang Z 2015 AIP Adv. 5 107221Google Scholar

    [31]

    Groep J, Center A P 2013 Opt. Express 21 26285Google Scholar

    [32]

    Spinelli P, Verschuuren M A, Polman A 2012 Nat. Commun. 3 692Google Scholar

  • 图 1  光学共振增强Ag纳米结构光阴极 (a) Spicer三步光电发射物理过程; (b) Ag纳米球结构光阴极; (c) Ag薄膜光阴极; (d) ITO衬底上Ag纳米球的FDTD光学仿真设置

    Fig. 1.  Optical resonance enhanced Ag nano-structured photocathode: (a) Spicer’s three-step model of photoemission; (b) illustration of the Ag nano-structured photocathode; (c) illustration of the Ag film photocathode; (d) cross-section of the FDTD setup used for simulating the optical properties of the Ag nanoparticles on ITO substrate.

    图 2  Ag纳米球光阴极的制备及Cs激活工艺 (a) Ag纳米球光阴极的制备工艺流程; (b)退火前Ag薄膜的SEM照片; (c)退火后Ag纳米球的SEM照片; (d) Ag纳米球表面Cs激活过程中光电流的演化过程

    Fig. 2.  Fabrication and activation process of the Ag nanosphere photocathode: (a) Schematics of the fabrication process for Ag nanosphere photocathode; (b) SEM image of the Ag film; (c) SEM image of the Ag nanosphere; (d) surface Cs activation process of the Ag nanosphere.

    图 3  Ag纳米球的Mie共振特性 (a)真空中和Ag/ITO衬底上直径D = 120 nm的Ag纳米球的Qsca, QabsQext谱; (b), (c)分别为真空中和Ag/ITO衬底上Ag纳米球中心截面在电偶极子共振波长处(分别为439和505 nm)的归一化磁场强度和磁场线分布; (d) Ag纳米球中心截面在电四极子共振波长处(350 nm)的归一化磁场强度和磁场线分布

    Fig. 3.  Mie resonance characteristics of Ag nanospheres: (a) Light scattering, absorption and extinction efficiency (Qsca, abs, ext) spectra of the Ag nanosphere (D = 120 nm) in air and on substrates; (b) and (c) are the normalized magnetic field intensity (|H|2, color) and lines (white lines) in vertical crosscuts through the center of the Ag nanosphere in air and on Ag/ITO substrate with the electric dipole resonance wavelength of 439 and 505 nm, respectively; (d) the normalized magnetic field intensity (|H|2, color) and lines (white lines) in vertical crosscuts through the center of the Ag nanosphere with the electric quadrupole resonance wavelength of 350 nm.

    图 4  Ag/ITO衬底上二维正方形排列的Ag纳米球阵列光吸收率ηa (a) P = 400 nm时, ηa随纳米球直径D与波长的关系; (b) D = 120 nm时, ηa随纳米球间距P与波长的关系

    Fig. 4.  ηa spectra of the square arranged Ag nanosphere array on Ag/ITO substrate: (a) Dependence of ηa spectra upon D when P = 400 nm; (b) dependence of ηa spectra upon P when D = 120 nm.

    图 5  Ag纳米球阵列与薄膜的光吸收谱 (a) 测试结果; (b) 仿真结果

    Fig. 5.  Light absorption spectrums of the Ag nanosphere array and Ag film: (a) Measured results. (b) simulated results.

    图 6  (a)实验测得的Ag纳米球阵列与薄膜光阴极光电发射量子效率; (b)理论计算的Ag纳米球阵列结构光阴极的光吸收谱

    Fig. 6.  (a) Measured photoemission quantum efficiency of the Ag nanosphere array and film photocathode; (b) calculated light absorption spectra of the Ag nanosphere array photocathode.

    Baidu
  • [1]

    Zhang Y, Qian y, Feng C, Shi F, Cheng H, Zou J, Zhang J, Zhang X 2017 Opt. Mater. Express 7 3456Google Scholar

    [2]

    邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康 2014 63 167902Google Scholar

    Deng W J, Peng X C, Zou J J, Jiang S T, Guo D, Zhang Y J, Chang B K 2014 Acta Phys. Sin. 63 167902Google Scholar

    [3]

    Karkare S, Boulet L, Cultrera L, Dunham B, Liu X, Schaff W, Bazarov I 2014 Phys. Rev. Lett. 112 097601Google Scholar

    [4]

    Hernandez G C, Poelker M, Hansknecht J 2016 IEEE Trans. Dielectr. Electr. Insul. 23 418Google Scholar

    [5]

    Xiang R, Teichert J 2015 Phys. Procedia 77 58Google Scholar

    [6]

    Pasmans P L E M, van Vugt D C, van Lieshout J P, Brussaard G J H, Luiten O J 2016 Phys. Rev. Accel. Beams 19 103403Google Scholar

    [7]

    Musumeci P, Moody J T, England R J, Rosenzweig J B, Tran T 2008 Phys. Rev. Lett. 100 244801Google Scholar

    [8]

    Xiang R, Arnold A, Michel P, Murcek P, Teichert J, Lu P, Vennekate H 2016 Proceedings of the 7th International Particle Accelerator Conference Busan, Korea, May 8−13, 2016 p3928

    [9]

    Barday R, Burrill A, Jankowiak A, Kamps T, Knobloch J, Kugeler O, Matveenko A, Neumann A, Schmeißer M, Völker J, Kneisel P, Nietubyc R, Schubert S, Smedley J, Sekutowicz J, Will I 2013 Phys. Rev. ST Accel. Beams 16 123402

    [10]

    Camino B, Noakes T C Q, Surman M, Seddon E A, Harrison N M 2016 Comput. Mater. Sci. 122 331Google Scholar

    [11]

    Lorusso A 2013 Appl. Phys. A 110 869Google Scholar

    [12]

    Dowell D H, Bazarov I, Dunham B, Harkay K, Hernandez-Garcia C, Legg R, Padmore H, Rao T, Smedley J, Wan W 2010 Nucl. Instrum. Methods A 622 685Google Scholar

    [13]

    Sheldon M T, Groep J, Brown A M, Polman A, Atwater H A 2014 Science 346 828Google Scholar

    [14]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472

    [15]

    Vilayurganapathy S, Nandasiri M I, Joly A G, El-Khoury P Z, Varga T, Coffey G, Schwenzer B, Pandey A, Kayani A, Hess W P, Thevuthasan S 2013 Appl. Phys. Lett. 103 161112Google Scholar

    [16]

    An C, Zhu R, Xu J, Liu Y, Hu X, Zhang J, Yu D 2018 AIP Adv. 8 055225Google Scholar

    [17]

    Li R K, To H, Andonian G, Feng J, Polyakov A, Scoby C M, Thompson K, Wan W, Padmore H A, Musumeci P 2013 Phys. Rev. Lett. 110 074801Google Scholar

    [18]

    Polyakov A, Senft C, Thompson K F, Feng J, Cabrini S, Schuck P J, Padmore H A, Peppernick S J, Hess W P 2013 Phys. Rev. Lett. 110 076802Google Scholar

    [19]

    Polyakov A, Cabrini S, Dhuey S, Harteneck B, Schuck P J, Padmore H A 2011 Appl. Phys. Lett. 98 203104Google Scholar

    [20]

    Baryshev S V, Antipov S, Kanareykin A D, Techlabs E, Savina M R, Zinovev A V, Thimsen E 2014 Proceedings of the 5th International Particle Accelerator Conference Dresden, Germany, June 15−20, 2014 p739

    [21]

    Nolle E L, Khavin Y B, Schelev M Y 2005 Proc. of SPIE 5580 424Google Scholar

    [22]

    Nolle E L and Schelev M Y 2004 Tech. Phys. Lett. 30 304Google Scholar

    [23]

    Droubay T C, Chambers S A, Joly A G, Hess W P, Németh K, Harkay K C, Spentzouris L 2014 Phys. Rev. Lett. 112 067601Google Scholar

    [24]

    König T, Simon G H, Rust H -P, Heyde M 2009 J. Phys. Chem. C 113 11301

    [25]

    He W, Vilayurganapathy S, Joly A G, Droubay T C, Chambers S A 2013 Appl. Phys. Lett. 102 071604Google Scholar

    [26]

    Ge X, Zou J, Deng W, Peng X, Wang W, Jiang S, Ding X, Chen Z, Zhang Y, Chang B 2015 Mater. Res. Express 2 095015Google Scholar

    [27]

    Spicer W E 1977 Appl. Phys. 12 115Google Scholar

    [28]

    Evlyukhin A B, Reinhardt C, Seidel A, Luk’yanchuk B S, Chichkov B N 2010 Phys. Rev. B 82 045404Google Scholar

    [29]

    江智宇, 王子仪, 王金金, 张荣君, 郑玉祥, 陈良尧, 王松有 2016 65 207802Google Scholar

    Jiang Z Y, Wang Z Y, Wang J J, Zhang R J, Zheng Y X, Chen L Y, Wang S Y 2016 Acta Phys. Sin. 65 207802Google Scholar

    [30]

    Huang Y, Ringe E, Hou M, Ma L, Zhang Z 2015 AIP Adv. 5 107221Google Scholar

    [31]

    Groep J, Center A P 2013 Opt. Express 21 26285Google Scholar

    [32]

    Spinelli P, Verschuuren M A, Polman A 2012 Nat. Commun. 3 692Google Scholar

  • [1] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算.  , 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [2] 李旭东, 姜增公, 顾强, 张猛, 林国强, 赵明华, 郭力. 基于制备成功率和量子效率提升的Te断续、Cs持续沉积制备Cs-Te光阴极.  , 2022, 71(17): 178501. doi: 10.7498/aps.71.20220818
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [5] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算.  , 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [6] 孙松松, 王红艳. 内嵌圆饼空心方形银纳米结构的光学性质.  , 2014, 63(10): 107803. doi: 10.7498/aps.63.107803
    [7] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究.  , 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [8] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象.  , 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [9] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [10] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定.  , 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [11] 李雪莲, 张志东, 王红艳, 熊祖洪, 张中月. 应用平行隔板增强纳米球表面电场.  , 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [12] 李敏, 尼启良, 陈波. 极端紫外波段碱卤化物光阴极材料量子效率计算.  , 2009, 58(10): 6894-6901. doi: 10.7498/aps.58.6894
    [13] 孙 萍, 徐 岭, 赵伟明, 李 卫, 徐 骏, 马忠元, 吴良才, 黄信凡, 陈坤基. 纳米球刻蚀法制备的二维有序的CdS纳米阵列及其光学性质的研究.  , 2008, 57(3): 1951-1955. doi: 10.7498/aps.57.1951
    [14] 吴大建, 刘晓峻. 金纳米球壳光学吸收的Mie理论分析.  , 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [15] 杨振萍, 李正红. 光阴极RF腔中微波过程研究.  , 2008, 57(5): 2627-2632. doi: 10.7498/aps.57.2627
    [16] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性.  , 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [17] 王 刚, 端木云, 崔一平, 张 宇, 刘 宓. 聚集效应对银纳米粒子的二阶非线性光学特性的影响研究.  , 2005, 54(1): 144-148. doi: 10.7498/aps.54.144
    [18] 唐渝兴, 赵 坤, 郝建奎, 王莉芳, 全胜文, 杨 希, 张云驰, 张保澄, 赵 夔. 新型注铯镁金属光阴极的实验研究.  , 2000, 49(5): 1002-1005. doi: 10.7498/aps.49.1002
    [19] 吴全德. 用电子显微镜观察银氧铯光电阴极中的银胶粒和银颗粒.  , 1979, 28(4): 553-562. doi: 10.7498/aps.28.553
    [20] 吴全德. 银氧铯光电阴极中银胶粒的作用.  , 1979, 28(5): 1-9. doi: 10.7498/aps.28.1-2
计量
  • 文章访问数:  8548
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-12-06
  • 刊出日期:  2020-03-20

/

返回文章
返回
Baidu
map