搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑绝缘体中的超快电荷自旋动力学

向天 程亮 齐静波

引用本文:
Citation:

拓扑绝缘体中的超快电荷自旋动力学

向天, 程亮, 齐静波

Ultrafast charge and spin dynamics on topological insulators

Xiang Tian, Cheng Liang, Qi Jing-Bo
PDF
HTML
导出引用
  • 拓扑绝缘体是根据动量空间的拓扑不变量来定义的一类区别于普通绝缘体的新兴拓扑非平庸材料, 其体态和表面态分别表现为绝缘和金属性质, 并且其表面态具有独特的自旋结构(自旋-动量锁定), 因此该类材料在光电器件和自旋电子器件领域有很多潜在的应用. 由于开展这些应用研究首先需要对这类材料中的电荷与自旋动力学有全面的了解, 所以拓扑绝缘体中的非平衡物理性质的研究引起了人们极大兴趣. 本文对这一研究领域所作的研究工作做了一个较全面的描述, 特别是跟时间分辨超快光谱相关的实验工作. 并希望文中的讨论能激发研究者尤其是理论工作者对这一领域进一步的探讨, 同时期待目标研究对象也能扩展到其他拓扑材料体系.
    Topological insulators (TIs), with unique bulk insulating and two-dimensional surface conducting states, show great promise of future optospintronics and spintronics applications, where a complete knowledge of the charge and spin dynamics is quite essential. Thus, the non-equilibrium properties inside TIs have attracted enormous attention. Here in this paper, we review the latest achievements in this field. The focus will be mainly on the experimental study, covering the ultrafast dynamical properties of charge, phonon, and spin. We hope that this review can stimulate further studies, especially theoretical research concerning the properties of topological insulators out of thermodynamic equilibrium.
      通信作者: 齐静波, jbqi@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974070, 11734006)和广东东莞市核心技术攻关前沿项目(批准号: 2019622101004)资助的课题
      Corresponding author: Qi Jing-Bo, jbqi@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974070, 11734006) and the Frontier Science Project of Dongguan, China (No. 2019622101004)
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [4]

    Hajlaoui M, Papalazarou E, Mauchain J, Lantz G, Moisan N, Boschetto D, Jiang Z, Miotkowski I, Chen Y P, Taleb-Ibrahimi A, Perfetti L, Marsi M 2012 Nano Lett. 12 3532Google Scholar

    [5]

    Xia Y, Wray L, Qian D, Hsieh D, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2008 arXiv 0812 2078

    [6]

    Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101Google Scholar

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102Google Scholar

    [8]

    Wang M C, Qiao S, Jiang Z, Luo S N, Qi J 2016 Phys. Rev. Lett. 116 036601Google Scholar

    [9]

    王明聪 2017 强关联及拓扑材料的超快光谱研究 (绵阳: 中国工程物理研究院)

    Wang M C 2017 Ultrafast optical spectroscopy research of strong correlated and topological materials (Mianyang: China Academy of Engineering Physics)(in Chinese)

    [10]

    Basov D N, Averitt R D, Van Der Marel D, Dressel M, Haule, K 2011 Rev. Mod. Phys. 83 471Google Scholar

    [11]

    Kumar N, Brian A R, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306Google Scholar

    [12]

    Luo L, Yang X, Liu X, Liu Z, Vaswani C, Cheng D, Mootz M, Zhao X, Yao Y, Wang C Z, Ho K M, Perakis I E, Dobrowolska M, Furdyna J K, Wang J 2019 Nat. Commun. 10 607Google Scholar

    [13]

    Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S, and Shen Z X 2012 Phys. Rev. Lett. 108 117403Google Scholar

    [14]

    Hsieh D, Mahmood F, McIver J W, Gardner D R, Lee Y S, Gedik N 2011 Phys. Rev. Lett. 107 077401Google Scholar

    [15]

    Zouaghi W, Thomson M D, Rabia K, Hahn R, Blank V, Roskos H G 2013 Eur. J. Phys. 34 S179Google Scholar

    [16]

    Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar

    [17]

    Averitt R D, Taylor A J 2002 J. Phys.: Condens. Matter 14 R1357

    [18]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [19]

    Demsar J, Sarrao J L, Taylor A J 2006 J. Phys.: Condens. Matter 18 R281Google Scholar

    [20]

    Kastler A 1957 JOSA 47 460Google Scholar

    [21]

    Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [22]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Reports Prog. Phys. 74 124512Google Scholar

    [23]

    Eich S, Stange A, Carr A V, Urbancic J, Popmintchev T, Wiesenmayer M, Jansen K, Ruffing A, Jakobs S, Rohwer T, Hellmann S, Chen C, Matyba P, Kipp L, Rossnagel K, Bauer M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M 2014 J. Electron Spectros. Relat. Phenomena 195 231Google Scholar

    [24]

    Cacho C, Crepaldi A, Battiato M, Braun J, Cilento F, Zacchigna M, Richter M C, Heckmann O, Springate E, Liu Y, Dhesi S S, Berger H, Bugnon Ph, Held K, Grioni M, Ebert H, Hricovini K, Minár J, Parmigiani F 2015 Phys. Rev. Lett. 114 097401Google Scholar

    [25]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2014 Appl. Phys. Lett. 105 171905Google Scholar

    [26]

    Lai Y P, Chen H J, Wu K H, Liu J M 2014 Appl. Phys. Lett. 105 232110Google Scholar

    [27]

    Weis M, Balin K, Rapacz R, Nowak A, Lejman M, Szade J, Ruello P 2015 Phys. Rev. B 92 014301Google Scholar

    [28]

    Sánchez-Barriga J, Battiato M, Krivenkov M, Golias E, Varykhalov A, Romualdi A, Yashina L V, Minár J, Kornilov O, Ebert H, Held K, Braun J 2017 Phys. Rev. B 95 125405Google Scholar

    [29]

    李正中 2002 固体理论 (第2版) (北京:高等教育出版社) 第 40 页

    Li Z Z 2002 Solid Theory (2nd Ed.) (Beijing: Higher Education Press) p40 (in Chinese)

    [30]

    Cheng L, La-O-Vorakiat C, Tang C S, Nair S K, Xia B, Wang L, Zhu J X, Chia Elbert E M 2014 Appl. Phys. Lett. 104 211906Google Scholar

    [31]

    Pan Z H, Fedorov A V, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001Google Scholar

    [32]

    Valdés Aguilar R, Qi J, Brahlek M, Bansal N, Azad A, Bowlan J, Oh S, Taylor A J, Prasankumar R P, Yarotski D A 2015 Appl. Phys. Lett. 106 011901Google Scholar

    [33]

    Wu L, Brahlek M, Aguilar R Valdés, Stier A V, Morris C M, Lubashevsky Y, Bilbro L S, Bansal N, Oh S, Armitage N P 2013 Nat. Phys. 9 410Google Scholar

    [34]

    Valdés Aguilar R, Stier A V, Liu W, Bilbro L S, George D K, Bansal N, Wu L, Cerne J, Markelz A G, Oh S, Armitage N P 2012 Phys. Rev. Lett. 108 087403Google Scholar

    [35]

    Choi Y G, Zhung C J, Park S H, Park J B, Kim J S, Kim S H, Park J H, Lee J S 2018 Phys. Rev. B 97 075307Google Scholar

    [36]

    Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401Google Scholar

    [37]

    Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 J. Electron Spectros. Relat. Phenomena 195 249Google Scholar

    [38]

    Saha K, Garate I 2014 Phys. Rev. B 90 245418Google Scholar

    [39]

    Shapourian H, Hughes T L, Ryu S 2015 Phys. Rev. B 92 165131Google Scholar

    [40]

    Yazyev O V, Moore J E, Louie S G 2010 Phys. Rev. Lett. 105 266806Google Scholar

    [41]

    Liu C X, Qi X L, Zhang H J, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122Google Scholar

    [42]

    Kamaraju N, Sunil K, Sood A K 2010 Europhys. Lett. 92 47007Google Scholar

    [43]

    Li Y W, Stoica Vladimir A, Endicott L, Wang G Y, Uher C, Clarke R 2010 Appl. Phys. Lett. 97 171908Google Scholar

    [44]

    Wang Y, Xu X, Venkatasubramanian R 2008 Appl. Phys. Lett. 93 113114Google Scholar

    [45]

    Cheng T K, Vidal J, Zeiger H. J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett 59 1923Google Scholar

    [46]

    Richter W, Kohler H, Becker C R 1977 Phys. Status Solidi 84 619Google Scholar

    [47]

    Merlin R 1997 Solid State Commun. 102 207Google Scholar

    [48]

    Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 Phys. Rev. Lett. 113 157401Google Scholar

    [49]

    Xu Y, Khafizov M, Satrapinsky L, Kúš P, Plecenik A, Sobolewski R 2003 Phys. Rev. Lett. 91 197004Google Scholar

    [50]

    Taneda T, Pepe G P, Parlato L, Golubov A A, Sobolewski R 2007 Phys. Rev. B 75 174507Google Scholar

    [51]

    Giraud S, Egger R 2011 Phys. Rev. B 83 245322Google Scholar

    [52]

    Giraud S, Kundu A, Egger R 2012 Phys. Rev. B 85 035441Google Scholar

    [53]

    Iyer V, Chen Y P, Xu X 2018 Phys. Rev. Lett. 121 026807Google Scholar

    [54]

    Hertel R 2005 arXiv:cond-mat 0509 0509060

    [55]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

  • 图 1  (a)反射式光学抽运-光学探测光路; (b)GaAs的典型的光学抽运-光学探测信号

    Fig. 1.  (a) Experimental setup of optical pump-probe spectroscopy in reflection configuration; (b) typical optical pump-probe signal of GaAs.

    图 2  (a) 电光采样法[15]; (b) OPTP光谱光路示意图

    Fig. 2.  (a) Electro-optic sampling[15]; (b) experimental setup of OPTP spectroscopy.

    图 3  (a)磁光克尔效应的原理[9]; (b)基于抽运-探测技术的时间分辨克尔旋转光谱示意图[8]

    Fig. 3.  (a) Schematic of magneto-optic Kerr effect[9]; (b) TRKR[8] via pump-probe technique.

    图 4  (a) ARPES 和(b) Tr-ARPES[23]实验平台示意图

    Fig. 4.  Schematic of (a) ARPES and (b) Tr-ARPES[23] setups.

    图 5  (a), (b)室温下Bi2Se3单晶的OPOP信号[7,11], 其中图(b)中红色方框为探测光在Bi2Se3样品表面上的光斑的半高全宽随时间延时的变化[11]

    Fig. 5.  (a), (b) Transient reflectivity of Bi2Se3 measured via OPOP at room temperature[7,11]. The red squares in (b) show the full width half maximum of the probe light’s spot as a function of delay time[11].

    图 6  Bi2Se3薄膜的OPTP信号[32] (a)无光抽运下的Bi2Se3电导; (b)有光抽运下透过Bi2Se3的太赫兹波形; (c), (d)不同样品厚度以及不同功率下太赫兹电场峰值随着抽运延时变化; (e)—(h)为在不同抽运延迟下, 通过用Drude-Lorentz拟合的对于不同厚度样品散射率和等离子频率

    Fig. 6.  OPTP signals of Bi2Se3 thin film[32]: (a) Conductance of Bi2Se3 without optical pump; (b) transmitted terahertz electric field after sample under optical pump; (c), (d) transient THz peak signal of samples with different thickness and pump power; (e)—(h) scattering rate and plasma frequency obtained from the fitting of conductance of Bi2Se3 by Drude-Lorentz model with different sample thickness and pump delay.

    图 7  (a), (b) Bi1.5Sb0.5Te1.7Se1.3(BSTS)和Bi2Se3的OPTP信号; (c), (d)BSTS和Bi2Se3的能带结构示意图和电子转移[35]

    Fig. 7.  (a), (b) OPTP signals of Bi1.5Sb0.5Te1.7Se1.3 (BSTS) and Bi2Se3; (c), (d) schematic diagrams of energy bands and electron transfer in BSTS and Bi2Se3[35]

    图 8  Bi2Se3的Tr-ARPES信号[13] (a) p型掺杂的Bi2Se3受光激发后不同能带的弛豫过程; (b)用于参考的Bi2Se3的能带; (c)平衡态Bi2Se3的能带结构, 由于掺杂导致费米能级较低, 表面态和体态导带并没有被占据; (d)在刚刚被抽运光激发时, 电子被激发到较高能级处; (e)—(g)则描述了较高能量的电子的弛豫过程

    Fig. 8.  Experimental Tr-ARPES data[13]: (a) The relaxation process for different bands of p-doped Bi2Se3 excited by light; (b) schematic of the electronic band structures of Bi2Se3 for reference; (c) electronic band structures for Bi2Se3, and the surface states and bulk conduction band are unoccupied due to the Fermi energy sitting inside the bulk valence band; (d) electrons are excited to high energy band after the excitation; (e)–(g) relaxation process of high energy electrons.

    图 9  由Shen研究组(a)[13]和Gedik研究组(b)[36]利用Tr-ARPES所测得的Bi2Se3电子温度数据

    Fig. 9.  Electron temperature of Bi2Se3 obtained by Tr-ARPES from Shen's group (a)[13] and Gedik's group (b)[36].

    图 10  Bi2Se3的OPOP实验数据及其傅里叶变换结果[8]

    Fig. 10.  OPOP experimental data and Fourier transform of the oscillatory data for Bi2Se3 at 293 K[8].

    图 11  Bi2Se3的Tr-ARPES实验数据图[48]

    Fig. 11.  Experimental Tr-ARPES data of Bi2Se3[48].

    图 12  Bi2Se3中载流子和自旋在光激发下的弛豫过程图示[14] (a)−(d)不同时间尺度下的弛豫过程

    Fig. 12.  Photoinduced relaxation processes of carriers and spin in Bi2Se3 [14]: (a)−(d) correspond to the relaxation processes of different time scales

    图 13  (a) Bi2Se3样品在10 K和80 K时的克尔转角光谱, 红线代表抽运激光为左旋圆偏振光, 蓝色实线代表右旋圆偏振光[8]; (b) Bi2Se3样品在不同光子能量和不同温度下的克尔转角光谱[8]; (c) Bi2Se3实验数据拟合[8]; (d)二次谐波克尔光谱(斜入射抽运光)测得的实验数据[14]; (e)−(h)左右圆偏振光激发后反射率变化随时间变化的实验数据[53]

    Fig. 13.  (a) Time-resolved Kerr rotation of Bi2Se3 at 10 K and 80 K. Red line indicates that the pump laser is left circularly polarized while the blue one is right circularly polarized[8]. (b) Time-resolved Kerr rotation of Bi2Se3 excited at different photon energies for different temperatures[8]. (c) fittings of the TRKR experimental data for Bi2Se3[8]. (d) Kerr rotation experimental data via second harmonic generation(oblique pump)[14]. (e)−(h) transient reflectivity corresponding to the left and right circularly polarized pump light[53].

    图 14  Bi2Se3在不同光子能量激发下的能带跃迁示意图[8]

    Fig. 14.  Schematic of photo-excitation processes via light with different photon energies in Bi2Se3 [8].

    Baidu
  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [3]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [4]

    Hajlaoui M, Papalazarou E, Mauchain J, Lantz G, Moisan N, Boschetto D, Jiang Z, Miotkowski I, Chen Y P, Taleb-Ibrahimi A, Perfetti L, Marsi M 2012 Nano Lett. 12 3532Google Scholar

    [5]

    Xia Y, Wray L, Qian D, Hsieh D, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2008 arXiv 0812 2078

    [6]

    Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101Google Scholar

    [7]

    Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102Google Scholar

    [8]

    Wang M C, Qiao S, Jiang Z, Luo S N, Qi J 2016 Phys. Rev. Lett. 116 036601Google Scholar

    [9]

    王明聪 2017 强关联及拓扑材料的超快光谱研究 (绵阳: 中国工程物理研究院)

    Wang M C 2017 Ultrafast optical spectroscopy research of strong correlated and topological materials (Mianyang: China Academy of Engineering Physics)(in Chinese)

    [10]

    Basov D N, Averitt R D, Van Der Marel D, Dressel M, Haule, K 2011 Rev. Mod. Phys. 83 471Google Scholar

    [11]

    Kumar N, Brian A R, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306Google Scholar

    [12]

    Luo L, Yang X, Liu X, Liu Z, Vaswani C, Cheng D, Mootz M, Zhao X, Yao Y, Wang C Z, Ho K M, Perakis I E, Dobrowolska M, Furdyna J K, Wang J 2019 Nat. Commun. 10 607Google Scholar

    [13]

    Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S, and Shen Z X 2012 Phys. Rev. Lett. 108 117403Google Scholar

    [14]

    Hsieh D, Mahmood F, McIver J W, Gardner D R, Lee Y S, Gedik N 2011 Phys. Rev. Lett. 107 077401Google Scholar

    [15]

    Zouaghi W, Thomson M D, Rabia K, Hahn R, Blank V, Roskos H G 2013 Eur. J. Phys. 34 S179Google Scholar

    [16]

    Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar

    [17]

    Averitt R D, Taylor A J 2002 J. Phys.: Condens. Matter 14 R1357

    [18]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [19]

    Demsar J, Sarrao J L, Taylor A J 2006 J. Phys.: Condens. Matter 18 R281Google Scholar

    [20]

    Kastler A 1957 JOSA 47 460Google Scholar

    [21]

    Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [22]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Reports Prog. Phys. 74 124512Google Scholar

    [23]

    Eich S, Stange A, Carr A V, Urbancic J, Popmintchev T, Wiesenmayer M, Jansen K, Ruffing A, Jakobs S, Rohwer T, Hellmann S, Chen C, Matyba P, Kipp L, Rossnagel K, Bauer M, Murnane M M, Kapteyn H C, Mathias S, Aeschlimann M 2014 J. Electron Spectros. Relat. Phenomena 195 231Google Scholar

    [24]

    Cacho C, Crepaldi A, Battiato M, Braun J, Cilento F, Zacchigna M, Richter M C, Heckmann O, Springate E, Liu Y, Dhesi S S, Berger H, Bugnon Ph, Held K, Grioni M, Ebert H, Hricovini K, Minár J, Parmigiani F 2015 Phys. Rev. Lett. 114 097401Google Scholar

    [25]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2014 Appl. Phys. Lett. 105 171905Google Scholar

    [26]

    Lai Y P, Chen H J, Wu K H, Liu J M 2014 Appl. Phys. Lett. 105 232110Google Scholar

    [27]

    Weis M, Balin K, Rapacz R, Nowak A, Lejman M, Szade J, Ruello P 2015 Phys. Rev. B 92 014301Google Scholar

    [28]

    Sánchez-Barriga J, Battiato M, Krivenkov M, Golias E, Varykhalov A, Romualdi A, Yashina L V, Minár J, Kornilov O, Ebert H, Held K, Braun J 2017 Phys. Rev. B 95 125405Google Scholar

    [29]

    李正中 2002 固体理论 (第2版) (北京:高等教育出版社) 第 40 页

    Li Z Z 2002 Solid Theory (2nd Ed.) (Beijing: Higher Education Press) p40 (in Chinese)

    [30]

    Cheng L, La-O-Vorakiat C, Tang C S, Nair S K, Xia B, Wang L, Zhu J X, Chia Elbert E M 2014 Appl. Phys. Lett. 104 211906Google Scholar

    [31]

    Pan Z H, Fedorov A V, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001Google Scholar

    [32]

    Valdés Aguilar R, Qi J, Brahlek M, Bansal N, Azad A, Bowlan J, Oh S, Taylor A J, Prasankumar R P, Yarotski D A 2015 Appl. Phys. Lett. 106 011901Google Scholar

    [33]

    Wu L, Brahlek M, Aguilar R Valdés, Stier A V, Morris C M, Lubashevsky Y, Bilbro L S, Bansal N, Oh S, Armitage N P 2013 Nat. Phys. 9 410Google Scholar

    [34]

    Valdés Aguilar R, Stier A V, Liu W, Bilbro L S, George D K, Bansal N, Wu L, Cerne J, Markelz A G, Oh S, Armitage N P 2012 Phys. Rev. Lett. 108 087403Google Scholar

    [35]

    Choi Y G, Zhung C J, Park S H, Park J B, Kim J S, Kim S H, Park J H, Lee J S 2018 Phys. Rev. B 97 075307Google Scholar

    [36]

    Wang Y H, Hsieh D, Sie E J, Steinberg H, Gardner D R, Lee Y S, Jarillo-Herrero P, Gedik N 2012 Phys. Rev. Lett. 109 127401Google Scholar

    [37]

    Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 J. Electron Spectros. Relat. Phenomena 195 249Google Scholar

    [38]

    Saha K, Garate I 2014 Phys. Rev. B 90 245418Google Scholar

    [39]

    Shapourian H, Hughes T L, Ryu S 2015 Phys. Rev. B 92 165131Google Scholar

    [40]

    Yazyev O V, Moore J E, Louie S G 2010 Phys. Rev. Lett. 105 266806Google Scholar

    [41]

    Liu C X, Qi X L, Zhang H J, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122Google Scholar

    [42]

    Kamaraju N, Sunil K, Sood A K 2010 Europhys. Lett. 92 47007Google Scholar

    [43]

    Li Y W, Stoica Vladimir A, Endicott L, Wang G Y, Uher C, Clarke R 2010 Appl. Phys. Lett. 97 171908Google Scholar

    [44]

    Wang Y, Xu X, Venkatasubramanian R 2008 Appl. Phys. Lett. 93 113114Google Scholar

    [45]

    Cheng T K, Vidal J, Zeiger H. J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett 59 1923Google Scholar

    [46]

    Richter W, Kohler H, Becker C R 1977 Phys. Status Solidi 84 619Google Scholar

    [47]

    Merlin R 1997 Solid State Commun. 102 207Google Scholar

    [48]

    Sobota J A, Yang S L, Leuenberger D, Kemper A F, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2014 Phys. Rev. Lett. 113 157401Google Scholar

    [49]

    Xu Y, Khafizov M, Satrapinsky L, Kúš P, Plecenik A, Sobolewski R 2003 Phys. Rev. Lett. 91 197004Google Scholar

    [50]

    Taneda T, Pepe G P, Parlato L, Golubov A A, Sobolewski R 2007 Phys. Rev. B 75 174507Google Scholar

    [51]

    Giraud S, Egger R 2011 Phys. Rev. B 83 245322Google Scholar

    [52]

    Giraud S, Kundu A, Egger R 2012 Phys. Rev. B 85 035441Google Scholar

    [53]

    Iyer V, Chen Y P, Xu X 2018 Phys. Rev. Lett. 121 026807Google Scholar

    [54]

    Hertel R 2005 arXiv:cond-mat 0509 0509060

    [55]

    Sobota J A, Yang S L, Kemper A F, Lee J J, Schmitt F T, Li W, Moore R G, Analytis J G, Fisher I R, Kirchmann P S, Devereaux T P, Shen Z X 2013 Phys. Rev. Lett. 111 136802Google Scholar

  • [1] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [2] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [3] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测.  , 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [4] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展.  , 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [5] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构.  , 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [6] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱.  , 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [7] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体.  , 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [9] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [10] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为.  , 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [11] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究.  , 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [12] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展.  , 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [13] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [14] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [15] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [16] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究.  , 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [17] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究.  , 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [18] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极.  , 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] 贺雪鹏, 刘院省, 刘世炳. 超快激光抽运-探测中探针光时间延迟量的 实时测量原理与光学设计.  , 2011, 60(2): 024212. doi: 10.7498/aps.60.024212
计量
  • 文章访问数:  13406
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2019-11-02
  • 上网日期:  2019-11-19
  • 刊出日期:  2019-11-20

/

返回文章
返回
Baidu
map