搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分形结构稀疏孔径阵列的成像性能

郝未倩 梁忠诚 刘肖尧 赵瑞 孔梅梅 关建飞 张月

引用本文:
Citation:

分形结构稀疏孔径阵列的成像性能

郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月

Imaging performance of fractal structuresparse aperture arrays

Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue
PDF
HTML
导出引用
  • 根据分形的自相似性理论提出一种分形稀疏孔径阵列结构. 该阵列是以Golay-3为分形结构单元, 按自相似方式扩展构成的一种多层分形阵列结构. 采用无量纲约化参数对其结构进行表征, 给出光瞳函数和调制传递函数解析表达式. 通过数值计算分形结构在不同填充因子和不同外层旋转角下的调制传递函数、实际截止频率和中频特性, 比较分析了当孔径数分别为N = 3, N = 9, N = 18阵列的MTF及特性参数. 结果表明, 当填充因子为$ 0.0952 < F \leqslant 0.2246$时, 其变化对MTF曲线影响较小. 外层旋转具有周期性, 转角的变化对实际截止频率没有大的影响. 当约化孔径参数$ {d_0} = 1$, 填充因子为22.46%时, N = 18阵列的中频特性更加平稳, 实际截止频率也更高. 利用分形自相似性可以在相对保持中频特性的前提下有效地扩展系统孔径. 由于采用约化孔径参数, 数值计算结果具有标度不变性.
    The angular resolution of optical system is limited by the ratio of the wavelength to the aperture of the entrance pupil, indicating that the optical system with large aperture has a high spatial resolution. Sparse aperture imaging is one of the effective solutions to the problem that the telescope is bulky, heavy and difficult to manufacture. According to the self-similarity and multi-scale characteristics of fractal configuration, we propose a sparse aperture array and analyze its performance for synthetic aperture imaging system. In the array Golay-3 is used as a structural unit to expand a multi-layered fractal configuration in a self-similar manner. Given the analytical expression of the pupil function which is reduced by dimensionless parameters, we calculate the modulation transfer functions (MTFs), the practical cut-off frequencies and the middle spatial frequency characteristics of the fractal configuration under different fill factors and different outer layer rotational angles. We analyze both the MTF values and the performance parameters of the fractal structure for the cases of N = 3, 9, and 18, respectively. The results show that the decrease of fill factor does not significantly change the MTF curve nor the practical cutoff frequency in a range of fill factor between 0.0952 and 0.2246. The outer layer rotational angle has a periodicity, and the change in the angle has no large influence on the practical cutoff frequency. When the reduced aperture parameter is $ {d_0} = 1$ and the fill factor is 22.46%, the middle spatial frequency of N = 18 array is more stable and the practical cut-off frequency is higher. Using the fractal self-similarity, the aperture of the system can be expanded effectively while maintaining the middle spatial frequency characteristics. The computing results are of scale invariance due to the adoption of the reduced aperture parameter.
      通信作者: 梁忠诚, zcliang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775102)资助的课题
      Corresponding author: Liang Zhong-Cheng, zcliang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775102)
    [1]

    吴泉英 2006 博士学位论文 (苏州: 苏州大学)

    Wu Q Y 2006 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese)

    [2]

    陈海亭, 江月松, 钟宇 2005 光学学报 25 1616Google Scholar

    Chen H T, Jiang Y S, Zhong Y 2005 Acta Opt. Sin. 25 1616Google Scholar

    [3]

    赵娟, 王大勇, 张亚新, 耿则勋, 陶世荃 2009 中国激光 36 934

    Zao J, Wang D Y, Zhang Y X, Geng Z X, Tao S K 2009 Chin. J. Lasers 36 934

    [4]

    刘丽, 江月松 2013 综合孔径成像原理与应用 (北京: 国防工业出版社) 第48−54页

    Liu L, Jiang Y S 2013 Principle and Application of Synthetic Aperture Imaging (Beijing: National Defense Industry Press) pp48−54 (in Chinese)

    [5]

    苏显渝, 李继陶 信息光学(北京: 科学出版社)第20−26页

    Su X Y, Li J T 1999 Information Opitics (Beijing: Science Press) pp20−26 (in Chinese)

    [6]

    Meinel A B 1970 Appl. Opt. 9 2501Google Scholar

    [7]

    Chung S, Spie M 2004 Opt. Eng. 43 2156Google Scholar

    [8]

    Fiete R D 2002 Opt. Eng. 41 1957Google Scholar

    [9]

    Zhou C, Wang Z 2018 Opt. Eng. 26 6973

    [10]

    易红伟, 李英才, 樊超 2007 光子学报 36 2062

    Yi H W, Li Y C, Fan C 2007 Acta. Photonica Sin. 36 2062

    [11]

    Miller N J, Dierking M P, Duncan B D 2007 Appl. Opt. 46 5933Google Scholar

    [12]

    Golay M J E 1971 J. Opt. Soc. Am. 61 272Google Scholar

    [13]

    Cornwell T J 1988 IEEE Trans. Antennas Propag. 36 1165Google Scholar

    [14]

    Cassaing F, Mugnier L M 2018 Opt. Lett. 43 4555

    [15]

    Tcherniavski I, Kahrizi M 2005 Opt. Lett. 44 103201

    [16]

    钱霖, 吴泉英, 吴峰, 沈为民 2005 光学学报 25 1030Google Scholar

    Qian L, Wu Q Y, Wu F, Shen W N 2005 Acta Opt. Sin. 25 1030Google Scholar

    [17]

    韩骥, 王大勇, 刘汉承, 伏西洋, 郭红锋, 陶世荃 2007 光电子·激光 18 649

    Han J, Wang D Y, Liu H C, Fu X Y, Guo H F, Tao S K 2007 Optronics Lasers 18 649

    [18]

    Liu L, Jiang Y S, Wang H Y, He Y T 2011 Opt. Eng. 50 53202Google Scholar

    [19]

    刘丽, 江月松, 王长伟 2009 光学学报 29 2774

    Liu L, Jiang Y S, Wang C W 2009 Acta Opt. Sin. 29 2774

    [20]

    刘政, 王胜千, 饶长辉 2012 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501Google Scholar

    [21]

    龙伟军, 王治乐, 周彦平 2004 光学学报 24 1009Google Scholar

    Long H W, Wang L Z, Zhou Y P 2004 Acta Opt. Sin. 24 1009Google Scholar

    [22]

    李兰芳 2004 博士学位论文 (南京: 南京理工大学)

    Liu L F 2004 Ph. D. Dissertatio (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    刘肖尧, 梁忠诚, 郝未倩, 赵瑞, 孔梅梅, 陈陶, 张月 2019 光学学报 39 0811003

    Liu X Y, Liang Z C, Hao W Q, Zhao R, Kong M M, Chen T, Zhang Y 2019 Acta Opt. Sin. 39 0811003

    [24]

    周程灏, 王治乐, 朱峰 2017 中国光学 10 25

    Zhou C H, Wang Z L, Zhu F 2017 Chin. Opt. 10 25

    [25]

    朱华, 姬翠翠 2011分形理论及其应用 (北京: 科学出版社) 第10−16页

    Zhu H, Ji C C 2011 Fractal Theory and Application (Beijing: Science Press) pp10−16 (in Chinese)

  • 图 1  分形阵列结构

    Fig. 1.  Fractal array configuration.

    图 2  结构特征 (a)子孔径直径与填充因子曲线图; (b)结构层数与包围圆半径关系

    Fig. 2.  Configuration characteristics: (a) Sub-aperture diameter and fill factor curve; (b) the relationship of the number of fractal configuration and the radius of aperture.

    图 3  分形阵列MTF(F = 22.46%) (a)三维MTF; (b) MTF俯视图

    Fig. 3.  MTF of fractal array (F = 22.46%): (a) There-dimensional MTF; (b) top-view MTF.

    图 4  分形结构随填充因子变化MTF曲线 (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Fig. 4.  MTF curves of fractal array with different fill factor: (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    图 5  分形阵列随外环旋转角度变化MTF曲线 (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Fig. 5.  MTF curves of fractal array with different outer layer rotational angles: (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    图 6  实际截止频率随外层旋转角的变化曲线

    Fig. 6.  The curve of the practical frequency with outer layer rotational angles.

    图 7  N = 3, N = 9阵列结构

    Fig. 7.  N = 3, N = 9 array configuration.

    图 8  3种阵列的MTF曲线(F = 22.46%) (a)沿fx归一化频率方向; (b)沿fy归一化频率方向

    Fig. 8.  MTF curves of three kinds of array configuration (F = 22.46%): (a) Normalized frequency along fx - axis; (b) normalized frequency along fy - axis.

    表 1  分形阵列在不同填充因子下的特性指标

    Table 1.  Characteristics of fractal array with different fill factors.

    ${d_0}$0.50.60.70.80.91.0
    填充因子0.09520.12190.14850.17470.20010.2246
    实际截止频率0.45180.62840.63500.63820.63820.6382
    中频特性0.05600.06320.05070.07260.06830.0632
    下载: 导出CSV

    表 2  3种阵列的特性指数

    Table 2.  Characteristics of three kinds of array configuration.

    阵列结构N = 3N = 9N = 18
    实际截止频率0.27780.27780.6382
    中频特性0.15150.05710.0632
    下载: 导出CSV
    Baidu
  • [1]

    吴泉英 2006 博士学位论文 (苏州: 苏州大学)

    Wu Q Y 2006 Ph. D. Dissertation (Suzhou: Suzhou University) (in Chinese)

    [2]

    陈海亭, 江月松, 钟宇 2005 光学学报 25 1616Google Scholar

    Chen H T, Jiang Y S, Zhong Y 2005 Acta Opt. Sin. 25 1616Google Scholar

    [3]

    赵娟, 王大勇, 张亚新, 耿则勋, 陶世荃 2009 中国激光 36 934

    Zao J, Wang D Y, Zhang Y X, Geng Z X, Tao S K 2009 Chin. J. Lasers 36 934

    [4]

    刘丽, 江月松 2013 综合孔径成像原理与应用 (北京: 国防工业出版社) 第48−54页

    Liu L, Jiang Y S 2013 Principle and Application of Synthetic Aperture Imaging (Beijing: National Defense Industry Press) pp48−54 (in Chinese)

    [5]

    苏显渝, 李继陶 信息光学(北京: 科学出版社)第20−26页

    Su X Y, Li J T 1999 Information Opitics (Beijing: Science Press) pp20−26 (in Chinese)

    [6]

    Meinel A B 1970 Appl. Opt. 9 2501Google Scholar

    [7]

    Chung S, Spie M 2004 Opt. Eng. 43 2156Google Scholar

    [8]

    Fiete R D 2002 Opt. Eng. 41 1957Google Scholar

    [9]

    Zhou C, Wang Z 2018 Opt. Eng. 26 6973

    [10]

    易红伟, 李英才, 樊超 2007 光子学报 36 2062

    Yi H W, Li Y C, Fan C 2007 Acta. Photonica Sin. 36 2062

    [11]

    Miller N J, Dierking M P, Duncan B D 2007 Appl. Opt. 46 5933Google Scholar

    [12]

    Golay M J E 1971 J. Opt. Soc. Am. 61 272Google Scholar

    [13]

    Cornwell T J 1988 IEEE Trans. Antennas Propag. 36 1165Google Scholar

    [14]

    Cassaing F, Mugnier L M 2018 Opt. Lett. 43 4555

    [15]

    Tcherniavski I, Kahrizi M 2005 Opt. Lett. 44 103201

    [16]

    钱霖, 吴泉英, 吴峰, 沈为民 2005 光学学报 25 1030Google Scholar

    Qian L, Wu Q Y, Wu F, Shen W N 2005 Acta Opt. Sin. 25 1030Google Scholar

    [17]

    韩骥, 王大勇, 刘汉承, 伏西洋, 郭红锋, 陶世荃 2007 光电子·激光 18 649

    Han J, Wang D Y, Liu H C, Fu X Y, Guo H F, Tao S K 2007 Optronics Lasers 18 649

    [18]

    Liu L, Jiang Y S, Wang H Y, He Y T 2011 Opt. Eng. 50 53202Google Scholar

    [19]

    刘丽, 江月松, 王长伟 2009 光学学报 29 2774

    Liu L, Jiang Y S, Wang C W 2009 Acta Opt. Sin. 29 2774

    [20]

    刘政, 王胜千, 饶长辉 2012 61 039501Google Scholar

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501Google Scholar

    [21]

    龙伟军, 王治乐, 周彦平 2004 光学学报 24 1009Google Scholar

    Long H W, Wang L Z, Zhou Y P 2004 Acta Opt. Sin. 24 1009Google Scholar

    [22]

    李兰芳 2004 博士学位论文 (南京: 南京理工大学)

    Liu L F 2004 Ph. D. Dissertatio (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [23]

    刘肖尧, 梁忠诚, 郝未倩, 赵瑞, 孔梅梅, 陈陶, 张月 2019 光学学报 39 0811003

    Liu X Y, Liang Z C, Hao W Q, Zhao R, Kong M M, Chen T, Zhang Y 2019 Acta Opt. Sin. 39 0811003

    [24]

    周程灏, 王治乐, 朱峰 2017 中国光学 10 25

    Zhou C H, Wang Z L, Zhu F 2017 Chin. Opt. 10 25

    [25]

    朱华, 姬翠翠 2011分形理论及其应用 (北京: 科学出版社) 第10−16页

    Zhu H, Ji C C 2011 Fractal Theory and Application (Beijing: Science Press) pp10−16 (in Chinese)

  • [1] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性.  , 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪.  , 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响.  , 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [4] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性.  , 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [5] 郑鑫, 武鹏飞, 饶瑞中. 天光背景下混浊大气中成像质量的分析方法.  , 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [6] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析.  , 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [7] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法.  , 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [8] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定.  , 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [9] 舒盼盼, 王伟, 唐明, 尚明生. 花簇分形无标度网络中节点影响力的区分度.  , 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [10] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析.  , 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [11] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究.  , 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [12] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究.  , 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [13] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究.  , 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [14] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究.  , 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析.  , 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [16] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究.  , 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] 黄 磊, 孙建安, 豆福全, 段文山, 刘兴霞. (3+1)维非线性Burgers系统的新的分离变量解及其局域激发结构与分形结构.  , 2007, 56(2): 611-619. doi: 10.7498/aps.56.611
    [18] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算.  , 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [19] 朱加民, 马正义, 郑春龙. (2+1)维Broer-Kaup方程的局域分形结构.  , 2004, 53(10): 3248-3251. doi: 10.7498/aps.53.3248
    [20] 徐 耀, 李志宏, 范文浩, 吴 东, 孙予罕, 王 俊, 董宝中. 小角x射线散射法研究甲基改性氧化硅凝胶的双分形结构.  , 2003, 52(2): 442-447. doi: 10.7498/aps.52.442
计量
  • 文章访问数:  8691
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-27
  • 修回日期:  2019-07-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回
Baidu
map