搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间透镜系统的冲击脉冲产生与特性研究

肖鸿晶 黄超 唐玉龙 徐剑秋

引用本文:
Citation:

基于时间透镜系统的冲击脉冲产生与特性研究

肖鸿晶, 黄超, 唐玉龙, 徐剑秋

Generation and characteristics of shock optical pulses based on a fiber-loop time-lens system

Xiao Hong-Jing, Huang Chao, Tang Yu-Long, Xu Jian-Qiu
PDF
HTML
导出引用
  • 冲击点火方案具备低点火能量阈值、高增益以及更好的流体力学稳定性等优势, 已成为实现惯性约束聚变点火的核心方案之一. 在冲击点火方案中, 高质量的冲击脉冲是实现成功点火的必要条件. 本文基于光纤环相位调制时间透镜系统, 提出一种利用时域非对称相位调制结合频域线性色散补偿的方案产生对脉宽和峰值功率对比度高精度可控的冲击脉冲, 并构建了理论模型, 通过数值模拟详细分析了系统关键参数对冲击脉冲特性的影响. 模拟结果显示, 通过对斩波函数、相位调制函数、调制深度、调制频率以及啁啾补偿量等参数的组合优化设计, 可以实现对冲击脉冲的脉冲宽度、脉冲上升沿以及冲击脉冲峰值功率对比度等关键性能指标高精度主动调控. 这种对冲击脉冲峰值功率对比度与冲击脉冲宽度独立主动可调的新型设计思路, 不仅有利于加深对激光脉冲波形操控原理的理解, 而且对实验上如何获取高质量的冲击脉冲具有重要参考意义.
    The shock ignition scheme has the advantages of low ignition energy threshold, high gain, and good hydrodynamic stability, which has become one of the key schemes for the potentially successful ignition of inertial confinement fusion. The crucial element of shock ignition is how to achieve a highly efficient shock laser pulse. We propose a new scheme based on a time-lens system combining the fiber-loop phase modulation and the grating-pair compression to generate a highly controllable shock pulse. Based on the asymmetric phase modulation in time-domain followed by linear dispersion compensation in frequency domain, the shock pulse can be actively controlled with high precision in both pulse duration and pulse contrast (peak power ratio of the compression part to the shock part of the pulse). We construct a theoretical model based on the nonlinear Schrödinger equation to simulate the evolution of the spectrum and temporal shape of the shock laser pulse. The influences of various key parameters of the proposed system on the characteristics of the generated shock pulse are analyzed in depth. The time lens system consists of three parts, i.e. the seed pulse carving part, the phase modulation loop, and the chirp-compensating grating pair. The operation principle of this system for generating shock pulse is as follows. First, a single-mode continuous wave 1053 nm distributed feedback seed laser is chopped into pulses with a Mach-Zehnder intensity modulator. Then the pulses enter into a fiber-loop for phase modulation. Owing to different modulation frequencies exerted on the left and right side of the pulse, the amount of spectral broadening of these two sides of the spectrum are also different after phase modulation. The spectrally broadened pulses are linearly chirped when the phase-modulation function has a parabolic shape. Finally, the pulse transits through a grating pair system for chirp compensating. Just like an anomalous dispersion delay line, the grating pair applies an anomalous group velocity dispersion to the passing optical pulse. When the chirp is compensated for appropriately, the pulse will be compressed. What the target pulse can be finally shaped into is dependent on the combined optimization of all the above processes.The simulation results show that by systematically designing the parameters such as chopping function, phase modulation function, modulation depth, modulation frequency, and chirp compensating, the target shock pulse can be actively controlled with high-precision in the pulse width, pulse rising edge, and peak-power contrast. In addition, we can also tune only one parameter (such as the pulse width) of the pulse, with the other parameters kept unchanged. This new design idea and the proposed system can actively and independently adjust the two key parameters (the peak power contrast and the pulse width) of the generated shock pulse, which is not only helpful in deepening our understanding of the principle of laser-pulse shaping, but also significant for the subsequent practical implement of shock ignition of inertial confinement fusion.
      通信作者: 唐玉龙, yulong@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61675129, 61275136, 61138006, 11121504)资助的课题.
      Corresponding author: Tang Yu-Long, yulong@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675129, 61275136, 61138006, 11121504).
    [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Lowdermilk W H 1997 Proc. SPIE 3047 16Google Scholar

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [6]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [9]

    Cristoforetti G, Antonelli L, Atzeni S, Baffigi F, Barbato F, Batani D, Boutoux G, Colaitis A, Dostal J, Dudzak R, Juha L, Koester P, Marocchino A, Mancelli D, Nicolai P, Renner O, Santos J J, Schiavi A, Skoric M M, Smid M, Straka P, Gizzi L A 2018 Phys. Plasmas 25 012702Google Scholar

    [10]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 015202Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202Google Scholar

    [11]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [12]

    Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310

    [13]

    Nora R, Theobald W, Betti R, Marshall F J, Michel D T, Seka W, Yaakobi B, Lafon M, Stoeckl C, Delettrez J, Solodov A A, Casner A, Reverdin C, Ribeyre X, Vallet A, Peebles J, Beg F N, Wei M S 2015 Phys. Rev. Lett. 114 045001Google Scholar

    [14]

    Casner A, Caillaud T, Darbon S, Duval A, Thfouin I, Jadaud J P, LeBreton J P, Reverdin C, Rosse B, Rosch R, Blanchot N, Villette B, Wrobel R, Miquel J L 2015 High Energy Density Phys. 17 2Google Scholar

    [15]

    Batani D, Koenig M, Baton S, Perez F, Gizzi L A, Koester P, Labate L, Honrubia J, Antonelli L, Morace A, Volpe L, Santos J, Schurtz G, Hulin S, Ribeyre X, Fourment C, Nicolai P, Vauzour B, Gremillet L, Nazarov W, Pasley J, Richetta M, Lancaster K, Spindloe Ch, Tolley M, Neely D, Kozlová M, Nejdl J, Rus B, Wolowski J, Badziak J, Dorchies F 2011 Plasma Phys. Controll. Fusion 53 124041Google Scholar

    [16]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 045207Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207Google Scholar

    [17]

    Batani D, Baton S, Casner A, Depierreux S, Hohenberger M, Klimo O, Koenig M, Labaune C, Ribeyre X, Rousseaux C, Schurtz G, Theobald W, Tikhonchuk V T 2014 Nucl. Fusion 54 054009Google Scholar

    [18]

    Perkins L J, Betti R, LaFortune K N, Williams W H 2009 Phys. Rev. Lett. 103 045004Google Scholar

    [19]

    袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 61 114206Google Scholar

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206Google Scholar

    [20]

    Howe J V, Lee J H, Xu C 2007 Opt. Lett. 32 1408Google Scholar

    [21]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [22]

    Backus S, Durfee C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

  • 图 1  时间透镜装置图(MZ, 马赫-曾德尔调制器; YDFA, 掺镱光纤放大器; AWG, 任意波形发生器; BPF, 带通滤波器; PM, 位相调制器; G1和G2, 光栅1和光栅2)

    Fig. 1.  Schematic setup of the time lens concept (MZ, Mach-Zehnder modulator; YDFA, ytterbium-doped fiber amplifier; AWG, arbitrary waveform generator; BPF, band-pass filter; PM, phase modulator; G1 and G2, grating1 and grating2).

    图 2  强度调制器斩波出的脉冲频谱(a)与波形(b)

    Fig. 2.  Spectrum (a) and pulseshape (b) of the seed laser after the intensity modulator.

    图 3  相位调制函数图

    Fig. 3.  Diagram of phase modulation function.

    图 4  考虑色散与非线性效应时脉冲信号经过光纤环不同圈数相位调制之后的频谱(a)与脉冲(b) 的演化

    Fig. 4.  Evolution of the spectrum (a) and shape (b) of the pulse after different round trips of phase modulation (before compression) when the dispersion and nonlinear effects of fibers are included.

    图 5  不同光栅对距离对最终输出脉冲的影响(光纤环环绕圈数设定为55圈, 光栅对角度设定为30°)

    Fig. 5.  Final output pulse shape with different grating-pair distance settings (the number of fiber loops is set to 20 turns and the grating pair angle is set to 30 degrees).

    图 6  输入脉冲陡峭度对经过时间透镜系统之后的频谱展宽(a)和脉冲波形(b)的影响

    Fig. 6.  Influences of the input pulse shape (different orders of Gaussian function) on the spectrum (a) and pulse shape (b) of the output pulse after being operated by the time lens system.

    图 7  压缩量一定时, 频谱展宽量不一样时被压缩输出后的脉冲 (a), (b) 表示调制深度不同的情况下, 频谱展宽与被压缩输出后的脉冲; (c), (d) 表示相位调制次数不同, 频谱展宽与被压缩输出后的脉冲

    Fig. 7.  Output pulse after different amount of spectrum broadening when the amount of compression is constant: (a), (b) Broadening spectrum and the output pulse after different modulation depth; (c), (d) the broadening spectrum and output pulse after different round trips.

    图 8  不同参数设计下最终压缩输出的脉冲 (a) 控制冲击脉冲宽度不变, 改变冲击脉冲峰值功率对比度; (b) 控制冲击脉冲峰值功率之比不变, 改变冲击脉冲宽度

    Fig. 8.  Final output pulse under different combined-parameter design: (a) Tuning the ratio of the peak power of the shock pulse and the compress pulse while keeping the shock pulse width unchanged; (b) modifying the shock pulse width while keeping the ratio of the peak power of the shock pulse to the compress pulse unchanged.

    Baidu
  • [1]

    Ongena J, Koch R, Wolf R, Zohm H 2016 Nat. Phys. 12 398Google Scholar

    [2]

    Lowdermilk W H 1997 Proc. SPIE 3047 16Google Scholar

    [3]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [4]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [5]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Hopkins L F B, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [6]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. Lett. 114 015001Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Betti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev. Lett. 98 155001Google Scholar

    [9]

    Cristoforetti G, Antonelli L, Atzeni S, Baffigi F, Barbato F, Batani D, Boutoux G, Colaitis A, Dostal J, Dudzak R, Juha L, Koester P, Marocchino A, Mancelli D, Nicolai P, Renner O, Santos J J, Schiavi A, Skoric M M, Smid M, Straka P, Gizzi L A 2018 Phys. Plasmas 25 012702Google Scholar

    [10]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 015202Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202Google Scholar

    [11]

    Moses E I, Boyd R N, Remington B A, Keane C J, Al-Ayat R 2009 Phys. Plasmas 16 041006Google Scholar

    [12]

    Theobald W, Nora R, Seka W, Lafon M, Anderson K S, Hohenberger M, Marshall F J, Michel D T, Solodov A A, Stoeckl C, Edgell D H, Yaakobi B, Casner A, Reverdin C, Ribeyre X, Shvydky A, Vallet A, Peebles J, Beg F N, Wei M S, Betti R 2015 Phys. Plasmas 22 056310

    [13]

    Nora R, Theobald W, Betti R, Marshall F J, Michel D T, Seka W, Yaakobi B, Lafon M, Stoeckl C, Delettrez J, Solodov A A, Casner A, Reverdin C, Ribeyre X, Vallet A, Peebles J, Beg F N, Wei M S 2015 Phys. Rev. Lett. 114 045001Google Scholar

    [14]

    Casner A, Caillaud T, Darbon S, Duval A, Thfouin I, Jadaud J P, LeBreton J P, Reverdin C, Rosse B, Rosch R, Blanchot N, Villette B, Wrobel R, Miquel J L 2015 High Energy Density Phys. 17 2Google Scholar

    [15]

    Batani D, Koenig M, Baton S, Perez F, Gizzi L A, Koester P, Labate L, Honrubia J, Antonelli L, Morace A, Volpe L, Santos J, Schurtz G, Hulin S, Ribeyre X, Fourment C, Nicolai P, Vauzour B, Gremillet L, Nazarov W, Pasley J, Richetta M, Lancaster K, Spindloe Ch, Tolley M, Neely D, Kozlová M, Nejdl J, Rus B, Wolowski J, Badziak J, Dorchies F 2011 Plasma Phys. Controll. Fusion 53 124041Google Scholar

    [16]

    袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 60 045207Google Scholar

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 045207Google Scholar

    [17]

    Batani D, Baton S, Casner A, Depierreux S, Hohenberger M, Klimo O, Koenig M, Labaune C, Ribeyre X, Rousseaux C, Schurtz G, Theobald W, Tikhonchuk V T 2014 Nucl. Fusion 54 054009Google Scholar

    [18]

    Perkins L J, Betti R, LaFortune K N, Williams W H 2009 Phys. Rev. Lett. 103 045004Google Scholar

    [19]

    袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞 2012 61 114206Google Scholar

    Yuan Q, Wei X F, Zhang X M, Zhang X, Zhao J P, Huang W H, Hu D X 2012 Acta Phys. Sin. 61 114206Google Scholar

    [20]

    Howe J V, Lee J H, Xu C 2007 Opt. Lett. 32 1408Google Scholar

    [21]

    Foster M A, Salem R, Geraghty D F, Turner-Foster A C, Lipson M, Gaeta A L 2008 Nature 456 81Google Scholar

    [22]

    Backus S, Durfee C G, Murnane M M, Kapteyn H C 1998 Rev. Sci. Instrum. 69 1207Google Scholar

  • [1] 魏嘉昕, 沙鹏飞, 方旭晨, 卢增雄, 李慧, 谭芳蕊, 吴晓斌. 基于相位调制的高相干光源照明匀化方法.  , 2024, 73(15): 154101. doi: 10.7498/aps.73.20240644
    [2] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束.  , 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [3] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性.  , 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [4] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器.  , 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [5] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进.  , 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [6] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响.  , 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究.  , 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [8] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器.  , 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [10] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演.  , 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [11] 李博, 娄淑琴, 谭中伟, 苏伟. 两种基于交叉相位调制的光脉冲压缩方案.  , 2012, 61(19): 194203. doi: 10.7498/aps.61.194203
    [12] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析.  , 2012, 61(1): 014203. doi: 10.7498/aps.61.014203
    [13] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于现役装置的冲击点火可行性概念研究.  , 2012, 61(11): 114206. doi: 10.7498/aps.61.114206
    [14] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响.  , 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [15] 李博, 谭中伟, 张晓兴. 利用电光相位调制和交叉相位调制制作时间透镜的实验及仿真分析.  , 2011, 60(8): 084204. doi: 10.7498/aps.60.084204
    [16] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光聚变冲击点火物理特性研究.  , 2011, 60(1): 015202. doi: 10.7498/aps.60.015202
    [17] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光脉冲参数对冲击点火的影响.  , 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响.  , 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析.  , 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
计量
  • 文章访问数:  8296
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-04-22
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回
Baidu
map