搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

医用回旋加速器回旋频率与磁场的调谐

吴永存 杨兴林 石金水 赵良超 何小中

引用本文:
Citation:

医用回旋加速器回旋频率与磁场的调谐

吴永存, 杨兴林, 石金水, 赵良超, 何小中

Tuning of cyclotron resonant frequency and magnetic field of medical cyclotron

Wu Yong-Cun, Yang Xing-Lin, Shi Jin-Shui, Zhao Liang-Chao, He Xiao-Zhong
PDF
HTML
导出引用
  • 高频谐振腔在回旋加速器实际运行过程中受束流负载、重力和热损耗引起的腔体变形等因素的影响, 其谐振频率会发生一定的偏移, 导致高频工作频率会随着谐振腔的谐振频率而变化. 为满足等时性加速的要求, 当高频工作频率发生改变时磁场强度也应进行相应的变化, 即励磁电流的大小需要相应改变, 使得粒子回旋频率与高频谐振频率相匹配以克服滑相. 首先通过有限元仿真软件建立静磁场模型模拟不同励磁电流下回旋加速器的平均磁场, 然后理论分析磁场与谐振频率的关系, 最后得到励磁电流在小区间变化时与谐振频率的关系; 根据计算的不同谐振频率对应的最佳励磁电流, 完成励磁电流的自动跟频. 在保证最大碳膜束流的情况下, 实验得到不同谐振频率对应的最佳励磁电流, 使理论得以验证. 根据其关系实现了励磁电流自动调节, 克服了滑相, 保证了法拉第束流的稳定输出. 该方法使得励磁电流能够快速、准确地寻找并跟踪谐振腔频率, 克服了频率偏移导致的滑相, 完成束流的稳定输出.
    The high-frequency resonant cavity is affected by factors such as beam load, gravity and heat loss caused by cavity deformation during the actual operation of the medical cyclotron. The resonant frequency will shift to a certain extent, resulting in the high-frequency operation frequency varying with the resonant frequency of the resonator cavity. In order to meet the requirements for isochronous acceleration, the magnetic field strength should also be changed correspondingly when the high-frequency operation frequency changes, that is, the magnitude of the magnet current needs changing accordingly, so that the particle cyclotron frequency matches the high-frequency resonant frequency to overcome the sliding phase. Firstly, the static magnetic field model is established by finite element simulation software to simulate the average magnetic field of cyclotron under different magnet currents. Then the relationship between the magnetic field and the resonant frequency is theoretically analyzed. Finally, the relationship between the magnet current and the resonant frequency is obtained when the magnet current varies in a small interval. According to the optimal magnet current corresponding to different resonance frequencies, the automatic frequency tracking of magnet current is completed. In the case of ensuring the maximum carbon film beam, the optimal magnet current corresponding to different resonance frequencies is obtained, which makes the theory validated. According to the relationship, the magnet current is automatically adjusted, which overcomes the slip phase and ensures the stable output of the Faraday beam. The method enables the magnet current to be quickly and accurately find and track the cavity frequency, overcomes the slip phase caused by the frequency offset, and completes the stable output of the beam.
      通信作者: 吴永存, yiranguwol@sina.cn
    • 基金项目: 核能开发科研项目(批准号: 科工二司2017-1341)资助的课题.
      Corresponding author: Wu Yong-Cun, yiranguwol@sina.cn
    • Funds: Project supported by the Nuclear Development Research Projects, China (Grant No. kegongersi2017-1341).
    [1]

    Gambhir S S, Czernin J, Schwimmer J 2001 J. Nucl. Med. 42 1S

    [2]

    Reske S N, Kotzerke J 2001 Eur. J. Nucl. Med. Mol. I. 28 1707Google Scholar

    [3]

    樊明武 2000 中国工程科学 2 9Google Scholar

    Fan M W 2000 Engineering 2 9Google Scholar

    [4]

    Bertrand S, Vaneycken I, Lahoutte T, Covens P, Caveliers V, Kral E, Geets J M, Nactergal B, Ghyoot M, Devillet F 2018 J. Nucl. Med. 59 2106

    [5]

    张锦明, 田嘉禾 2006 同位素 19 241

    Zhang J M, Tian J H 2006 Journal of Isotopes 19 241

    [6]

    赵籍九, 尹兆升 2006 粒子加速器技术 (北京: 高等教育出版社) 第236页

    Zhao J J, Yin Z S 2006 Particle Accelerator Technology (Beijing: Higher Education Press) p236 (in Chinese)

    [7]

    陈佳洱 1993 加速器物理基础 (北京: 原子能出版社) 第20, 21页

    Chen J E 1993 Basics of Accelerator Physics (Beijing: Atomic Energy Press) pp20, 21 (in Chinese)

    [8]

    赵凯, 牟宗信, 张家良 2014 63 185208Google Scholar

    Zhao K, Mu Z X, Zhang J L 2014 Acta Phys. Sin. 63 185208Google Scholar

    [9]

    张天爵, 李振国, 储诚节 2010 科学通报 35 3351

    Zhang T J, Li Z G, Chu C J 2010 Science Bulletin 35 3351

    [10]

    雷钰 2012 硕士学位论文 (成都: 成都理工大学)

    Lei Yu 2012 M. S. Thesis (Chengdu: Chengdu University of Technology) (in Chinese)

    [11]

    答嘉曦, 洪越明, 董天临 2006 2005'全国微波毫米波会议论文集 (第三册) 中国 深圳, 2月27日−3月2日, 2006 pp64−67

    Da J X, Hong Y M, Dong T L 2006 2005' National Microwave and Millimeter Wave Conference Papers Collection (Vol.3) Shenzhen, China, February 27−March 2, 2006 pp64−67 (in Chinese)

    [12]

    答嘉曦 2006 硕士学位论文 (武汉: 华中科技大学)

    Da J X 2006 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    刘毅 2008 硕士学位论文 (武汉: 华中科技大学)

    Liu Yi 2008 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [14]

    田瑞霞, 王贤武, 金鹏 2014 强激光与粒子束 26 26105101Google Scholar

    Tian R X, Wang X W, Jin P 2014 High Power Laser and Particle Beam 26 26105101Google Scholar

    [15]

    郝焕锋 2014 博士学位论文 (北京: 中国科学院大学)

    Hao H F 2014 Ph.D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [16]

    何小中, 杨国君, 龙继东 2014 核技术 37 10201Google Scholar

    He X Z, Yang G J, Long J D 2014 Nuclear Technol. 37 10201Google Scholar

    [17]

    Bhandari S, Lee G H, Klales A, Watanabe K, Taniguchi T, Heller E, Kim P, Westervelt R M 2016 Nano Lett. 16 1690Google Scholar

    [18]

    Xia W L, Wang Z, Lu Y R 2014 IEEE Trans. Nucl. Sci. 61 2345Google Scholar

    [19]

    李平, 黄娴, 文玉梅 2012 61 137504Google Scholar

    Li P, Huang X, Wen YM 2012 Acta Phys. Sin. 61 137504Google Scholar

    [20]

    李毅, 王秋良 2016 Opera3D工程电磁场计算及多场耦合分析 (北京: 清华大学出版社) 第3页

    Li Y, Wang Q L 2016 Electromagnetic Field Calculation and Multi-field Coupling Analysis of Opera 3D Project (Beijing: Tsinghua University Press) p3

  • 图 1  高频相位随时间的变化

    Fig. 1.  High frequency phase variation with time.

    图 2  高频腔压随时间的变化

    Fig. 2.  High frequency cavity voltage variation with time.

    图 3  谐振频率随时间的变化

    Fig. 3.  Resonant frequency variation with time.

    图 4  静磁场模型

    Fig. 4.  Model of static magnetic field.

    图 5  后处理模型

    Fig. 5.  Post-processing model.

    图 6  不同半径的平均磁场变化曲线

    Fig. 6.  Average magnetic field curve at different radii.

    图 7  励磁电流与磁感应强度的关系

    Fig. 7.  Relation between the excitation current and the magnetic induction intensity.

    图 8  励磁电流变化导致的相移

    Fig. 8.  Phase shift caused by change of magnet current.

    图 9  谐振频率随励磁电流变化量的变化

    Fig. 9.  Relation between resonant frequency and magnet current.

    图 10  谐振频率与励磁电流的对应关系

    Fig. 10.  Corresponding relation between resonant frequency and magnet current.

    图 11  靶流随时间的变化

    Fig. 11.  Variation of target beam current with time.

    图 12  输出能量的变化情况

    Fig. 12.  Change of output energy

    Baidu
  • [1]

    Gambhir S S, Czernin J, Schwimmer J 2001 J. Nucl. Med. 42 1S

    [2]

    Reske S N, Kotzerke J 2001 Eur. J. Nucl. Med. Mol. I. 28 1707Google Scholar

    [3]

    樊明武 2000 中国工程科学 2 9Google Scholar

    Fan M W 2000 Engineering 2 9Google Scholar

    [4]

    Bertrand S, Vaneycken I, Lahoutte T, Covens P, Caveliers V, Kral E, Geets J M, Nactergal B, Ghyoot M, Devillet F 2018 J. Nucl. Med. 59 2106

    [5]

    张锦明, 田嘉禾 2006 同位素 19 241

    Zhang J M, Tian J H 2006 Journal of Isotopes 19 241

    [6]

    赵籍九, 尹兆升 2006 粒子加速器技术 (北京: 高等教育出版社) 第236页

    Zhao J J, Yin Z S 2006 Particle Accelerator Technology (Beijing: Higher Education Press) p236 (in Chinese)

    [7]

    陈佳洱 1993 加速器物理基础 (北京: 原子能出版社) 第20, 21页

    Chen J E 1993 Basics of Accelerator Physics (Beijing: Atomic Energy Press) pp20, 21 (in Chinese)

    [8]

    赵凯, 牟宗信, 张家良 2014 63 185208Google Scholar

    Zhao K, Mu Z X, Zhang J L 2014 Acta Phys. Sin. 63 185208Google Scholar

    [9]

    张天爵, 李振国, 储诚节 2010 科学通报 35 3351

    Zhang T J, Li Z G, Chu C J 2010 Science Bulletin 35 3351

    [10]

    雷钰 2012 硕士学位论文 (成都: 成都理工大学)

    Lei Yu 2012 M. S. Thesis (Chengdu: Chengdu University of Technology) (in Chinese)

    [11]

    答嘉曦, 洪越明, 董天临 2006 2005'全国微波毫米波会议论文集 (第三册) 中国 深圳, 2月27日−3月2日, 2006 pp64−67

    Da J X, Hong Y M, Dong T L 2006 2005' National Microwave and Millimeter Wave Conference Papers Collection (Vol.3) Shenzhen, China, February 27−March 2, 2006 pp64−67 (in Chinese)

    [12]

    答嘉曦 2006 硕士学位论文 (武汉: 华中科技大学)

    Da J X 2006 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    刘毅 2008 硕士学位论文 (武汉: 华中科技大学)

    Liu Yi 2008 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [14]

    田瑞霞, 王贤武, 金鹏 2014 强激光与粒子束 26 26105101Google Scholar

    Tian R X, Wang X W, Jin P 2014 High Power Laser and Particle Beam 26 26105101Google Scholar

    [15]

    郝焕锋 2014 博士学位论文 (北京: 中国科学院大学)

    Hao H F 2014 Ph.D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [16]

    何小中, 杨国君, 龙继东 2014 核技术 37 10201Google Scholar

    He X Z, Yang G J, Long J D 2014 Nuclear Technol. 37 10201Google Scholar

    [17]

    Bhandari S, Lee G H, Klales A, Watanabe K, Taniguchi T, Heller E, Kim P, Westervelt R M 2016 Nano Lett. 16 1690Google Scholar

    [18]

    Xia W L, Wang Z, Lu Y R 2014 IEEE Trans. Nucl. Sci. 61 2345Google Scholar

    [19]

    李平, 黄娴, 文玉梅 2012 61 137504Google Scholar

    Li P, Huang X, Wen YM 2012 Acta Phys. Sin. 61 137504Google Scholar

    [20]

    李毅, 王秋良 2016 Opera3D工程电磁场计算及多场耦合分析 (北京: 清华大学出版社) 第3页

    Li Y, Wang Q L 2016 Electromagnetic Field Calculation and Multi-field Coupling Analysis of Opera 3D Project (Beijing: Tsinghua University Press) p3

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计.  , 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究.  , 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [3] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性.  , 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [4] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振.  , 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [5] 马霞, 王静. 掺杂硅纳米梁谐振频率的理论模型及分子动力学模拟.  , 2017, 66(10): 106103. doi: 10.7498/aps.66.106103
    [6] 桑永杰, 蓝宇, 丁玥文. Helmholtz水声换能器弹性壁液腔谐振频率研究.  , 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [7] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响.  , 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [8] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构.  , 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [9] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器.  , 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [10] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究.  , 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [11] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究.  , 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [12] 王连胜, 罗春荣, 黄 勇, 赵晓鹏. 基于电流变液的可调谐负磁导率材料.  , 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [13] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应.  , 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [14] 施德恒, 孙金锋, 刘玉芳, 马 恒, 朱遵略, 杨向东. 7Li2分子23Πu激发态的解析势能函数、振动能级及其转动惯量.  , 2007, 56(8): 4454-4460. doi: 10.7498/aps.56.4454
    [15] 刘玉芳, 韩晓琴, 吕广申, 孙金锋. B2C(1A1)和BC2(2A′)的结构与解析势能函数.  , 2007, 56(8): 4412-4419. doi: 10.7498/aps.56.4412
    [16] 施德恒, 孙金锋, 马 恒, 朱遵略. 7Li2分子2 3Σ+g激发态的解析势能函数、谐振频率及振动能级.  , 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [17] 石东平, 李芳昱, 张 义. 高斯束谐振系统对引力波频率和方向的选择效应.  , 2006, 55(10): 5041-5047. doi: 10.7498/aps.55.5041
    [18] 李先枢, 高燕球, 陈志恬, 冯镇业. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅱ)——轴对称稳定光学无源谐振腔的计算.  , 1983, 32(8): 1002-1016. doi: 10.7498/aps.32.1002
    [19] 刘建邦. 共焦不稳定光学谐振腔的解析解.  , 1980, 29(9): 1231-1236. doi: 10.7498/aps.29.1231
    [20] 许煜寰. 压电陶瓷振子的谐振频率温度稳定性分析.  , 1978, 27(2): 146-159. doi: 10.7498/aps.27.146
计量
  • 文章访问数:  8984
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-03-18
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map