搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种K分布强湍流下的测量设备无关量子密钥分发方案

谷文苑 赵尚弘 东晨 朱卓丹 屈亚运

引用本文:
Citation:

一种K分布强湍流下的测量设备无关量子密钥分发方案

谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运

Measurement-device-independent quantum key distribution under K-distributed strong atmospheric turbulence

Gu Wen-Yuan, Zhao Shang-Hong, Dong Chen, Zhu Zhuo-Dan, Qu Ya-Yun
PDF
HTML
导出引用
  • 研究了K分布强湍流下自由空间测量设备无关量子密钥分发协议模型, 采用阈值后选择方法来减少大气湍流对密钥生成率的影响, 对比分析了使用阈值后选择方法前后协议的密钥率和湍流强度之间的关系. 仿真结果表明, 使用阈值后选择方法可以有效地提高协议的密钥生成率, 尤其是在高损耗和强湍流区域, 而且其最佳阈值与湍流强度、信道平均损耗有关, 对实际搭建性能较好的自由空间测量设备无关量子密钥分发协议系统具有一定的参考价值.
    Free-space quantum key distribution (QKD) allows two distant parties to share secret keys with information-theoretic security, which can pave the way for satellite-ground quantum communication to set up a global network for sharing secret message. However, free-space channels in the presence of atmospheric turbulence are affected by losses and fluctuating transmissivity which further affect the quantum bit error rate and the secure key rate. To implement free-space QKD, it is indispensable to study the effect of atmospheric turbulence. Different models have been used to describe the probability distribution for channel transmission coefficient under atmospheric turbulence, including the log-normal distribution and K distribution. In this paper, we focus on free space measurement-device-independent quantum key distribution (MDI-QKD) under K-distributed strong atmospheric turbulence. The MDI-QKD can close all loopholes on detection and achieve a similar performance to QKD, relying on time-reversed version of entanglement-based QKD protocol. Threshold post-selection method is adopted to restrain detrimental effects of the atmospheric turbulence, which is based on the selection of the intervals with higher channel transmissivity. By combining the general MDI-QKD system model with this method, we present a framework for the optimal choice of threshold. Our simulation result shows that the optimal threshold is dependent on the turbulence intensity and expected channel loss. Furthermore, compared with the original MDI-QKD protocols, the proposed protocol with threshold post-selection method can acquire a considerable better performance in key rate, especially in regions of high turbulence and high loss. What is more, this is instructive to the building of a practical free-space MDI-QKD system with better performance.
      通信作者: 东晨, dongchengfkd@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11704412)和国防科技大学校内重点项目(批准号: zk-17-02-09)资助的课题.
      Corresponding author: Dong Chen, dongchengfkd@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704412) and the School Key Development Program for National University of Defense Technology, China (Grant No. zk-17-02-09).
    [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [2]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [3]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [4]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z P 2015 Quantum Inf. Process. 14 2959Google Scholar

    [5]

    东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾颢 2014 63 030302Google Scholar

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302Google Scholar

    [6]

    东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303Google Scholar

    Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303Google Scholar

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process. 17 225Google Scholar

    [8]

    Chen X B, Sun Y R, Xu G, Jia H Y, Qu Z G, Yang Y X 2017 Quantum Inf. Process. 16 244Google Scholar

    [9]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z P 2015 Quantum Inf. Process. 14 4297Google Scholar

    [10]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [11]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [12]

    Bedington R, Arrazola J M, Ling A 2017 EPJ Quantum Inf. 3 30Google Scholar

    [13]

    Buttler W T, Hughes R J, Lamoreaux S K, Morgan G L, Nordholt J E, Peterson C G 2000 Phys. Rev. Lett. 84 5652Google Scholar

    [14]

    Richard J H, Jane E N, Derek D, Charles G P 2002 New J. Phys. 4 43

    [15]

    Manderbach S T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z; Kurtsiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504Google Scholar

    [16]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photon. 11 509

    [17]

    Vallone G, Bacco D, Dequal, D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [18]

    Oi D K, Ling A, Vallone G, Villoresi P, Greenland S, Kerr E, Macdonald M, Weinfurter H, Kuiper H, Charbon E, Ursin R 2017 EPJ Quantum Technol. 4 6Google Scholar

    [19]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar

    [20]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [21]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar

    [22]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [23]

    Carrasco-Casado A, Fernández V, Denisenko N 2016 Free-Space Quantum Key Distribution (Switzerland: Springer International Publishing) pp589−607

    [24]

    Hill R J, Frehlich R G 1997 J. Opt. Soc. Am. A 14 1530Google Scholar

    [25]

    Lyke S D, Voelz D G, Roggemann M C 2009 Appl. Opt. 48 6511Google Scholar

    [26]

    Mclaren J R, Thomas J C, Mackintosh J L, Mudge K A, Grant K J, Clare B A, Cowley W G 2012 Appl. Opt. 51 5996Google Scholar

    [27]

    Kiasaleh K 2006 IEEE Trans. Commun. 54 604Google Scholar

    [28]

    Vallone G, Marangon D G, Canale M, Vallone G, Marangon D G, Canale M, Savorgnan I, Bacco D, Barbieri M, Calimani S, Barbieri C, Laurenti N, Villoresi P 2015 Phys. Rev. A 91 042320

    [29]

    Erven C, Heim B, Meyerscott E, Bourgoin J P, Laflamme R, Weihs G, Jennewein T 2012 New J. Phys. 14 129401

    [30]

    Wang W, Xu F, Lo H K 2018 Phys. Rev. A 97 32337Google Scholar

    [31]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [32]

    Ma X, Razavi M 2012 Phys. Rev. A 86 062319Google Scholar

    [33]

    Niu M, Cheng J, Holzman J F 2011 IEEE Trans. Commun. 59 664Google Scholar

    [34]

    Bourgoin J, Meyerscott E, Higgins B L, Helou B, Erven C, Hübel H, Kumar B, Hudson D, D'Souza I, Girard R, Laflamme R, Jennewein T 2014 New J. Phys. 16 069502Google Scholar

    [35]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

  • 图 1  自由空间测量设备无关量子密钥分发模型示意图(BS, 50 : 50光分束器; PBS, 偏振光分束器; D1H, D2H, D1V, D2V, 单光子探测器; U1 (U2), Alice和Bob的大气信道)

    Fig. 1.  Free space MDI-QKD diagram. BS, 50 : 50 beam splitter; PBS, polarized beam splitter; D1H, D2H, D1V, D2V, single-photon detector; U1 (U2), Alice and Bob’s atmospheric channel.

    图 2  $\alpha $与闪烁系数$\sigma _{\rm{I}}^{\rm{2}}$的关系

    Fig. 2.  Relationship between $\alpha $ and scintillation coefficient $\sigma _{\rm{I}}^2$.

    图 3  最佳阈值$\eta _{\rm{T}}^{{\rm{opt}}}$与信道参数$\alpha $、平均传输率${\eta _0}$的关系

    Fig. 3.  Relationship of optimal threshold value $\eta _{\rm{T}}^{{\rm{opt}}}$ to channel parameter $\alpha $ and average transmission rate ${\eta _0}$.

    图 4  强湍流下MDI-QKD密钥率与阈值、信道参数的关系

    Fig. 4.  Relationship of key rate of MDI-QKD under strong turbulence to threshold and channel parameters.

    图 5  强湍流下MDI-QKD密钥率与信道损耗间的关系

    Fig. 5.  Relationship between key rate of MDI-QKD under strong turbulence and channel loss.

    Baidu
  • [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [2]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [3]

    Gottesman D, Lo H K, Lütkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325

    [4]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z P 2015 Quantum Inf. Process. 14 2959Google Scholar

    [5]

    东晨, 赵尚弘, 赵卫虎, 石磊, 赵顾颢 2014 63 030302Google Scholar

    Dong C, Zhao S H, Zhao W H, Shi L, Zhao G H 2014 Acta Phys. Sin. 63 030302Google Scholar

    [6]

    东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303Google Scholar

    Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303Google Scholar

    [7]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process. 17 225Google Scholar

    [8]

    Chen X B, Sun Y R, Xu G, Jia H Y, Qu Z G, Yang Y X 2017 Quantum Inf. Process. 16 244Google Scholar

    [9]

    Xu G, Chen X B, Li J, Wang C, Yang Y X, Li Z P 2015 Quantum Inf. Process. 14 4297Google Scholar

    [10]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [11]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [12]

    Bedington R, Arrazola J M, Ling A 2017 EPJ Quantum Inf. 3 30Google Scholar

    [13]

    Buttler W T, Hughes R J, Lamoreaux S K, Morgan G L, Nordholt J E, Peterson C G 2000 Phys. Rev. Lett. 84 5652Google Scholar

    [14]

    Richard J H, Jane E N, Derek D, Charles G P 2002 New J. Phys. 4 43

    [15]

    Manderbach S T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z; Kurtsiefer C, Rarity J G, Zeilinger A, Weinfurter H 2007 Phys. Rev. Lett. 98 010504Google Scholar

    [16]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photon. 11 509

    [17]

    Vallone G, Bacco D, Dequal, D, Gaiarin S, Luceri V, Bianco G, Villoresi P 2015 Phys. Rev. Lett. 115 040502Google Scholar

    [18]

    Oi D K, Ling A, Vallone G, Villoresi P, Greenland S, Kerr E, Macdonald M, Weinfurter H, Kuiper H, Charbon E, Ursin R 2017 EPJ Quantum Technol. 4 6Google Scholar

    [19]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar

    [20]

    Yin J, Cao Y, Li Y H, Liao S K, Zhang L, Ren J G, Cai W Q, Liu W Y, Li B, Dai H, Li G B, Lu Q M, Gong Y H, Xu Y, Li S L, Li F Z, Yin Y Y, Jiang Z Q, Li M, Jia J J, Ren G, He D, Zhou Y L, Zhang X X, Wang N, Chang X, Zhu Z C, Liu N L, Chen Y A, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Science 356 1140Google Scholar

    [21]

    Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar

    [22]

    Liao S K, Cai W Q, Handsteiner J, Liu B, Yin J, Zhang L, Rauch D, Fink M, Ren J G, Liu W Y, Li Y, Shen Q, Cao Y, Li F Z, Wang J F, Huang Y M, Deng L, Xi T, Ma L, Hu T, Li L, Liu N L, Koidl F, Wang P, Chen Y A, Wang X B, Steindorfer M, Kirchner G, Lu C Y, Shu R, Ursin R, Scheidl T, Peng C Z, Wang J Y, Zeilinger A, Pan J W 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [23]

    Carrasco-Casado A, Fernández V, Denisenko N 2016 Free-Space Quantum Key Distribution (Switzerland: Springer International Publishing) pp589−607

    [24]

    Hill R J, Frehlich R G 1997 J. Opt. Soc. Am. A 14 1530Google Scholar

    [25]

    Lyke S D, Voelz D G, Roggemann M C 2009 Appl. Opt. 48 6511Google Scholar

    [26]

    Mclaren J R, Thomas J C, Mackintosh J L, Mudge K A, Grant K J, Clare B A, Cowley W G 2012 Appl. Opt. 51 5996Google Scholar

    [27]

    Kiasaleh K 2006 IEEE Trans. Commun. 54 604Google Scholar

    [28]

    Vallone G, Marangon D G, Canale M, Vallone G, Marangon D G, Canale M, Savorgnan I, Bacco D, Barbieri M, Calimani S, Barbieri C, Laurenti N, Villoresi P 2015 Phys. Rev. A 91 042320

    [29]

    Erven C, Heim B, Meyerscott E, Bourgoin J P, Laflamme R, Weihs G, Jennewein T 2012 New J. Phys. 14 129401

    [30]

    Wang W, Xu F, Lo H K 2018 Phys. Rev. A 97 32337Google Scholar

    [31]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [32]

    Ma X, Razavi M 2012 Phys. Rev. A 86 062319Google Scholar

    [33]

    Niu M, Cheng J, Holzman J F 2011 IEEE Trans. Commun. 59 664Google Scholar

    [34]

    Bourgoin J, Meyerscott E, Higgins B L, Helou B, Erven C, Hübel H, Kumar B, Hudson D, D'Souza I, Girard R, Laflamme R, Jennewein T 2014 New J. Phys. 16 069502Google Scholar

    [35]

    Xu F, Curty M, Qi B, Lo H K 2013 New J. Phys. 15 113007Google Scholar

  • [1] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 更正: 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2024, 73(19): 199901. doi: 10.7498/aps.73.199901
    [2] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法.  , 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [3] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [4] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [5] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [6] 聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸. 降雪对地表附近自由空间量子信道的影响及参数仿真.  , 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [7] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议.  , 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [8] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略.  , 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [9] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议.  , 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [10] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [11] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [12] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响.  , 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [13] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [14] 聂敏, 任杰, 杨光, 张美玲, 裴昌幸. PM2.5大气污染对自由空间量子通信性能的影响.  , 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [15] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静. 基于旋转不变态的测量设备无关量子密钥分配协议研究.  , 2014, 63(17): 170303. doi: 10.7498/aps.63.170303
    [16] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布.  , 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [17] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响.  , 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [18] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制.  , 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [19] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究.  , 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [20] 苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿. 相位调制自由空间量子密钥分配.  , 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
计量
  • 文章访问数:  7081
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-03-01
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回
Baidu
map