-
最近有研究者提出了一个基于三粒子最大纠缠态GHZ态的量子广播多重盲签名协议, 它能满足一个重要消息需要多人签发, 但出于隐私保护要求每一个签名者都不能获取消息的具体内容这一应用需求, 并有望应用于电子银行系统. 本文给出了一个基于三粒子部分纠缠态的量子广播多重盲签名协议, 与原协议相比, 该协议用三粒子部分纠缠态代替三粒子极大纠缠GHZ态, 并且能不降低协议的安全性. 新协议不再依赖于极大纠缠态, 仅仅需要在通信参与者之间分享部分纠缠态就可以完成该签名方案, 这在一定程度上节约了纠缠资源, 降低了协议的实现条件, 提高了协议的可应用性. 这也充分体现了多体部分纠缠态也可以作为一种量子资源来实现既定的量子通信任务.
-
关键词:
- 量子广播多重盲签名协议 /
- 三粒子部分纠缠态 /
- 哈希函数
Recently, a quantum broadcasting multiple blind signature scheme based on GHZ state has been proposed, which could be used to settle the problem that a message is so important that it needs to be signed by multiple signatories, in order to guarantee the message privacy: none of signatories can acquire the content of the message they have signed. Maybe it can be applied to an E-bank system. For example, a large amount of money has to be transferred through E-bank system on the internet. The E-bank system operator submits the request to the bank after filling the application form including payment amount, bank transfer account and some other information. When the request arrives, the bank clerk signs to approve. However, it is not enough, it has to ask the manager for authority, and then it needs to be signed by the manager. In the whole process, all the signatories cannot learn what they have signed, but the application form has been recorded in the E-bank system. So, once disagreement takes place, the bank can track the message sender. In this paper, we present a new quantum broadcasting multiple blind signature scheme which is based on a three-particle partial entanglement state. Comparing with the original scheme, the partial entanglement state is utilized in our new scheme in place of the GHZ state, and this does not bring down the security of the scheme. Particularly, using the partial entanglement state can not only save the entanglement resource to some extent, but also make the scheme much easier to be realized. As is well known, It is not easy to keep the maximum entanglement state shared among the participants in the whole quantum communication process. By using the partial entanglement in place of the maximum entanglement can improve the new scheme applicability to make it more practical. It is also indicated that multi-qubit entangled systems which are partially entangled can be efficiently used as a resource in quantum information processing with perfect performance. -
Keywords:
- quantum broadcasting multiple blind signature scheme /
- three-particle partial entanglement state /
- hash function
[1] Shor P W 1994 Proceeding of IEEE Symposium on Foundations of Computer Science Santa Fe NM USA, November 20―22, 1994 p124
[2] Wallden P, Dunjko V, Kent A, et al. 2014 Phys. Rev. A 91 042304
[3] Amiri R, Andersson E 2015 Entropy 17 5635Google Scholar
[4] Gottesman D, Chuang I 2001 arXiv:quant-ph/0105032v2
[5] Zeng G, Keitel C 2002 Phys. Rev. A 65 042312Google Scholar
[6] Li Q, Chan W, Long D 2009 Phys. Rev. A 79 054307Google Scholar
[7] Zou X, Qiu D 2010 Phys. Rev. A 82 042325Google Scholar
[8] Yin X, Ma W, Liu W 2012 Int. J. Quantum Inf. 10 1250041Google Scholar
[9] Wang T, Wei Z 2012 Quantum Inf. Process. 11 455Google Scholar
[10] Yang Y 2008 Chin. Phys. B 17 415Google Scholar
[11] Cao H, Huang J, Yu Y, et al. 2014 Int. J. Theor. Phys. 53 3095Google Scholar
[12] Xu G 2015 Int. J. Theor. Phys. 54 2605Google Scholar
[13] Wen X, Tian Y, Ji L, et al. 2010 Phys. Scr. 81 055001Google Scholar
[14] Wen X 2010 Phys. Scr. 82 065403Google Scholar
[15] Xu R, Huang L, Yang W, et al. 2011 Opt. Commun. 284 3654Google Scholar
[16] Zhang K, Song T, Zuo H, et al. 2013 Phys. Scr. 87 045012Google Scholar
[17] Xu G, Zhang K 2015 Quantum Inf. Process. 14 2577Google Scholar
[18] Su Q, Huang Z, Wen Q, et al. 2010 Opt. Commun. 283 4408Google Scholar
[19] Yin X, Ma W, Liu W 2012 Int. J. Theor. Phys. 51 455Google Scholar
[20] Lin T, Chen Y, Chang T, et al. 2014 Proceeding of 2014 IEEE 14th International Conference on Nanotechnology Toronto Canada, August 18―21, 2014 p868
[21] Shi W, Zhang J, Zhou Y, et al. 2015 Quantum Inf. Process. 14 3019Google Scholar
[22] Wen X, Liu Y, Sun Y 2007 Z. Naturforsch. A 62 147
[23] Wen X, Liu Y, Zhou N 2008 Int. J. Mod. Phys. B 22 4251Google Scholar
[24] Wen X, Niu X, Ji L, et al. 2009 Opt. Commun. 282 666Google Scholar
[25] Xiao M, Li Z 2016 Quantum Inf. Process. 15 3841Google Scholar
[26] Tian Y, Chen H, Ji S, et al. 2014 Opt. Quant. Electron. 46 769Google Scholar
[27] Zhang W, Qiu D, Zou X 2016 Quantum Inf. Process. 15 2499Google Scholar
[28] Tian Y, Chen H, Gao Y, et al. 2014 Int. J. Mod. Phys.: Conf. Ser. 33 1460369Google Scholar
[29] Zhang W, Qiu D, Zou X, et al. 2017 Quantum Inf. Process. 16 150Google Scholar
[30] Kim T, Choi J, Jho N, et al. 2015 Phys. Scr. 90 025101Google Scholar
[31] Yu C, Guo G, Lin S 2014 Sci. China Phys. Mech. Astron. 57 2079Google Scholar
[32] Kumar A, Adhikari S, Banerjee S, Roy S 2013 Phys. Rev. A 87 022307Google Scholar
-
[1] Shor P W 1994 Proceeding of IEEE Symposium on Foundations of Computer Science Santa Fe NM USA, November 20―22, 1994 p124
[2] Wallden P, Dunjko V, Kent A, et al. 2014 Phys. Rev. A 91 042304
[3] Amiri R, Andersson E 2015 Entropy 17 5635Google Scholar
[4] Gottesman D, Chuang I 2001 arXiv:quant-ph/0105032v2
[5] Zeng G, Keitel C 2002 Phys. Rev. A 65 042312Google Scholar
[6] Li Q, Chan W, Long D 2009 Phys. Rev. A 79 054307Google Scholar
[7] Zou X, Qiu D 2010 Phys. Rev. A 82 042325Google Scholar
[8] Yin X, Ma W, Liu W 2012 Int. J. Quantum Inf. 10 1250041Google Scholar
[9] Wang T, Wei Z 2012 Quantum Inf. Process. 11 455Google Scholar
[10] Yang Y 2008 Chin. Phys. B 17 415Google Scholar
[11] Cao H, Huang J, Yu Y, et al. 2014 Int. J. Theor. Phys. 53 3095Google Scholar
[12] Xu G 2015 Int. J. Theor. Phys. 54 2605Google Scholar
[13] Wen X, Tian Y, Ji L, et al. 2010 Phys. Scr. 81 055001Google Scholar
[14] Wen X 2010 Phys. Scr. 82 065403Google Scholar
[15] Xu R, Huang L, Yang W, et al. 2011 Opt. Commun. 284 3654Google Scholar
[16] Zhang K, Song T, Zuo H, et al. 2013 Phys. Scr. 87 045012Google Scholar
[17] Xu G, Zhang K 2015 Quantum Inf. Process. 14 2577Google Scholar
[18] Su Q, Huang Z, Wen Q, et al. 2010 Opt. Commun. 283 4408Google Scholar
[19] Yin X, Ma W, Liu W 2012 Int. J. Theor. Phys. 51 455Google Scholar
[20] Lin T, Chen Y, Chang T, et al. 2014 Proceeding of 2014 IEEE 14th International Conference on Nanotechnology Toronto Canada, August 18―21, 2014 p868
[21] Shi W, Zhang J, Zhou Y, et al. 2015 Quantum Inf. Process. 14 3019Google Scholar
[22] Wen X, Liu Y, Sun Y 2007 Z. Naturforsch. A 62 147
[23] Wen X, Liu Y, Zhou N 2008 Int. J. Mod. Phys. B 22 4251Google Scholar
[24] Wen X, Niu X, Ji L, et al. 2009 Opt. Commun. 282 666Google Scholar
[25] Xiao M, Li Z 2016 Quantum Inf. Process. 15 3841Google Scholar
[26] Tian Y, Chen H, Ji S, et al. 2014 Opt. Quant. Electron. 46 769Google Scholar
[27] Zhang W, Qiu D, Zou X 2016 Quantum Inf. Process. 15 2499Google Scholar
[28] Tian Y, Chen H, Gao Y, et al. 2014 Int. J. Mod. Phys.: Conf. Ser. 33 1460369Google Scholar
[29] Zhang W, Qiu D, Zou X, et al. 2017 Quantum Inf. Process. 16 150Google Scholar
[30] Kim T, Choi J, Jho N, et al. 2015 Phys. Scr. 90 025101Google Scholar
[31] Yu C, Guo G, Lin S 2014 Sci. China Phys. Mech. Astron. 57 2079Google Scholar
[32] Kumar A, Adhikari S, Banerjee S, Roy S 2013 Phys. Rev. A 87 022307Google Scholar
计量
- 文章访问数: 7298
- PDF下载量: 51
- 被引次数: 0