搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性

张虎 邢成芬 龙克文 肖亚宁 陶坤 王利晨 龙毅

引用本文:
Citation:

一级磁结构相变材料Mn0.6Fe0.4NiSi0.5Ge0.5和Ni50Mn34Co2Sn14的磁热效应与磁场的线性相关性

张虎, 邢成芬, 龙克文, 肖亚宁, 陶坤, 王利晨, 龙毅

Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation

Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi
PDF
导出引用
  • 磁熵变(△SM)与磁场(0H)的相关性已在很多二级相变材料中被研究并报道,但一级相变材料的磁热效应与磁场相关性还少有报道.本文在具有一级磁结构相变的Mn0.6Fe0.4NiSi0.5Ge0.5材料中研究发现△SM与0H存在线性相关性,并通过麦克斯韦关系式的数值分析详细讨论了这一线性相关性的来源.同时,进一步发现在低磁场时,△SM近似正比于0H的平方.该线性相关性同样在一级磁结构相变Ni50Mn34Co2Sn14材料中得到了印证.但由于一级磁弹相变LaFe11.7Si1.3材料相变温度具有更强的磁场依赖性,不具有△SM的线性相关性,因此,本研究表明,当磁结构相变材料的相变温度具有弱磁场依赖性时,△SM与0H具有线性相关性.进而,在磁场未达到相变饱和磁场以下,利用△SM与0H的线性相关性可以有效推测更高磁场下的△SM.
    The study on the field dependence of magnetocaloric effect (MCE) is considered to be of fundamental and practical importance, since it not only guides us in understanding and optimizing the MCE, but also helps us estimate the MCE for higher magnetic field which is not available in some laboratories. The magnetic field (0H) dependence of magnetic entropy change (△SM) has been studied extensively in many materials with second-order magnetic transition. However, the field dependence of MCE for first-order magnetic transition (FOMT) materials has not been sufficiently studied due to their complexity and diversity. In the present work, polycrystalline Mn0.6Fe0.4NiSi0.5Ge0.5, Ni50Mn34Co2Sn14, and LaFe11.7Si1.3 compounds with FOMT are prepared, and the magnetic and magnetocaloric properties are investigated systematically. In order to avoid a spurious △SM, the M-0H curves are measured in a loop process. The M-0H curves are corrected by taking into account the demagnetization effect, i.e. Hint=Hext-NdM. It is found that the -△SM follows a linear relationship -△SM=-△S0 +0H with the variation of magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 compound when 0H 1 T. In addition, it is also noted that the △SM is approximately proportional to the square of 0H at low field. The origin of this linear relationship between △SM and 0H at high field and the deviation at low field are discussed by numerically analyzing the Maxwell relation. In addition to the △SM peak value, it is found that other △SM values at different temperatures also follow the linear relation at high field by performing the same numerical analysis. Moreover, it is found that the fitted △SM curve matches the experimental data very well. This result indicates that the linear relationship between △SM and 0H could be utilized to predict the △SM for higher magnetic field change when the field is lower than the saturation field. The applicability of this linear relationship is also verified in other systems with first-order magnetostructural transformation, such as Ni50Mn34Co2Sn14. However, it fails to describe the field dependence of △SM in LaFe11.7Si1.3, which exhibits a strong field dependence of transition temperature. Consequently, our study reveals that a linear dependence of △SM on 0H could occur in magnetostructural transition materials, which show the field independence of transition temperature.
      通信作者: 张虎, zhanghu@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51671022,51701130)、国家重点研发计划(批准号:2017YFB0702704)、北京市自然科学基金(批准号:2162022)和佛山市科技计划(批准号:2015IT100044)资助的课题.
      Corresponding author: Zhang Hu, zhanghu@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022, 51701130), the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the Natural Science Foundation of Beijing, China (Grant No. 2162022), and the Scientific and Technological Innovation Team Program of Foshan, China (Grant No. 2015IT100044).
    [1]

    Smith A, Bahl C R H, Bjrk R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [2]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [3]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [4]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)[郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 65 217502]

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

    [6]

    Franco V, Conde A 2010 Int. J. Refrig. 33 465

    [7]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)[张登魁,赵金良,张红国,岳明 2014 63 197501]

    [8]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [9]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [10]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [11]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873

    [12]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909

    [14]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [15]

    Franco V, Blzquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Res. 42 305

    [16]

    Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501

    [17]

    Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z, Long Y 2016 Chin. Phys. B 25 127104

    [18]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [19]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [20]

    Patra M, Majumdar S, Giri S, Iles G N, Chatterji T 2010 J. Appl. Phys. 107 076101

    [21]

    Franco V, Blzquez J S, Conde A 2006 J. Appl. Phys. 100 064307

    [22]

    Franco V, Blzquez J S, Milln M, Borrego J M, Conde C F, Conde A 2007 J. Appl. Phys. 101 09C503

    [23]

    Bonilla C M, Herrero-Albillos J, Bartolom F, Garca L M, Parra-Borderas M, Franco V 2010 Phys. Rev. B 81 224424

    [24]

    Casanova F, Batlle X, Labarta A, Marcos J, Maosa L, Planes A 2002 Phys. Rev. B 66 212402

    [25]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H, Zhang X X 2015 Adv. Electron. Mater. 1 1500076

    [26]

    Tao K, Zhang H, Long K W, Wang Y X, Wu M L, Xiao Y N, Xing C F, Wang L C, Long Y 2017 Intermetallics 91 45

    [27]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [28]

    Giguere A, Foldeaki M, Gopal B R, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [29]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Brck E 2009 J. Magn. Magn. Mater. 321 3559

    [30]

    Li Y W, Zhang H, Tao K, Wang Y X, Wu M L, Long Y 2017 Mater. Des. 114 410

    [31]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565

    [32]

    Fldeki M, Chahine R, Bose T K, Barclay J A 2000 Phys. Rev. Lett. 85 4192

    [33]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [34]

    Zou J D, Shen B G, Gao B, Shen J, Sun J R 2009 Adv. Mater. 21 693

    [35]

    Amaral J S, Amaral V S 2009 Appl. Phys. Lett. 94 042506

    [36]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater. 322 1552

  • [1]

    Smith A, Bahl C R H, Bjrk R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288

    [2]

    Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439

    [3]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [4]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)[郑新奇,沈俊,胡凤霞,孙继荣,沈保根 2016 65 217502]

    [5]

    Zhang H, Shen B G 2015 Chin. Phys. B 24 127504

    [6]

    Franco V, Conde A 2010 Int. J. Refrig. 33 465

    [7]

    Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese)[张登魁,赵金良,张红国,岳明 2014 63 197501]

    [8]

    Tegus O, Brck E, Buschow K H J, de Boer F R 2002 Nature 415 150

    [9]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [10]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494

    [11]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873

    [12]

    Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909

    [14]

    Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401

    [15]

    Franco V, Blzquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Res. 42 305

    [16]

    Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501

    [17]

    Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z, Long Y 2016 Chin. Phys. B 25 127104

    [18]

    Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

    [19]

    Franco V, Blzquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512

    [20]

    Patra M, Majumdar S, Giri S, Iles G N, Chatterji T 2010 J. Appl. Phys. 107 076101

    [21]

    Franco V, Blzquez J S, Conde A 2006 J. Appl. Phys. 100 064307

    [22]

    Franco V, Blzquez J S, Milln M, Borrego J M, Conde C F, Conde A 2007 J. Appl. Phys. 101 09C503

    [23]

    Bonilla C M, Herrero-Albillos J, Bartolom F, Garca L M, Parra-Borderas M, Franco V 2010 Phys. Rev. B 81 224424

    [24]

    Casanova F, Batlle X, Labarta A, Marcos J, Maosa L, Planes A 2002 Phys. Rev. B 66 212402

    [25]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H, Zhang X X 2015 Adv. Electron. Mater. 1 1500076

    [26]

    Tao K, Zhang H, Long K W, Wang Y X, Wu M L, Xiao Y N, Xing C F, Wang L C, Long Y 2017 Intermetallics 91 45

    [27]

    Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507

    [28]

    Giguere A, Foldeaki M, Gopal B R, Chahine R, Bose T K, Frydman A, Barclay J A 1999 Phys. Rev. Lett. 83 2262

    [29]

    Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Brck E 2009 J. Magn. Magn. Mater. 321 3559

    [30]

    Li Y W, Zhang H, Tao K, Wang Y X, Wu M L, Long Y 2017 Mater. Des. 114 410

    [31]

    Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565

    [32]

    Fldeki M, Chahine R, Bose T K, Barclay J A 2000 Phys. Rev. Lett. 85 4192

    [33]

    Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191

    [34]

    Zou J D, Shen B G, Gao B, Shen J, Sun J R 2009 Adv. Mater. 21 693

    [35]

    Amaral J S, Amaral V S 2009 Appl. Phys. Lett. 94 042506

    [36]

    Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater. 322 1552

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金.  , 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 林源, 胡凤霞, 沈保根. 相变调控、磁热效应和反常热膨胀.  , 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [3] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能.  , 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [4] 张艳, 宗朔通, 孙志刚, 刘虹霞, 陈峰华, 张克维, 胡季帆, 赵同云, 沈保根. HoCoSi快淬带的磁性和各向异性磁热效应.  , 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [5] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展.  , 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [6] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响.  , 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应.  , 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [8] 霍军涛, 盛威, 王军强. 非晶合金的磁热效应及磁蓄冷性能.  , 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [9] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质.  , 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [10] 郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根. 磁热效应材料的研究进展.  , 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [11] 董雪, 张国营, 夏往所, 黄逸佳, 胡风. Dy3Al5O12磁热性质研究.  , 2015, 64(17): 177502. doi: 10.7498/aps.64.177502
    [12] 张登魁, 赵金良, 张红国, 岳明. LaFe11.5Si1.5化合物氢化特性及稳定性的研究.  , 2014, 63(19): 197501. doi: 10.7498/aps.63.197501
    [13] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究.  , 2014, 63(14): 147502. doi: 10.7498/aps.63.147502
    [14] 黄逸佳, 张国营, 胡风, 夏往所, 刘海顺. PrNi2的磁和磁热性能研究.  , 2014, 63(22): 227501. doi: 10.7498/aps.63.227501
    [15] 王芳, 原凤英, 汪金芝. Mn42Al50-xFe8+x合金的磁性和磁热效应.  , 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [16] 蔡培阳, 冯尚申, 陈卫平, 薛双喜, 李志刚, 周英, 王海波, 王古平. Ni47Mn32Ga21多晶合金的磁熵变和磁感生应变.  , 2011, 60(10): 107501. doi: 10.7498/aps.60.107501
    [17] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究.  , 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应.  , 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [19] 沈 俊, 李养贤, 胡凤霞, 王光军, 张绍英. Ce2Fe16Al化合物在居里温度附近的磁性和磁熵变.  , 2003, 52(5): 1250-1254. doi: 10.7498/aps.52.1250
    [20] 陈伟, 钟伟, 潘成福, 常虹, 都有为. La0.8-xCa0.2MnO3纳米颗粒的居里温度与磁热效应.  , 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
计量
  • 文章访问数:  6595
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-09
  • 修回日期:  2018-08-09
  • 刊出日期:  2019-10-20

/

返回文章
返回
Baidu
map