搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁斯格明子器件及其应用进展

夏静 韩宗益 宋怡凡 江文婧 林柳蓉 张溪超 刘小晰 周艳

引用本文:
Citation:

磁斯格明子器件及其应用进展

夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳

Overview of magnetic skyrmion-based devices and applications

Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan
PDF
导出引用
  • 磁斯格明子是一种具有准粒子特性的拓扑纳米磁畴壁结构.由于磁斯格明子具有较好的稳定性和新奇的动力学特性,并可被磁场、电场、电流等方式调控,有望成为高密度、低耗能、非易失性信息存储及逻辑运算的新兴信息载体.自2009年磁斯格明子首次被实验观测到至今,已有多种基于磁斯格明子的器件概念和原型器件被提出.本文对基于磁斯格明子应用的研究进展进行综述,对现阶段几种具有代表性的磁斯格明子器件应用进行简要介绍、分析和总结,包括基于磁斯格明子的赛道存储器件、逻辑计算器件、类晶体管功能器件和纳米级微波振荡器;同时阐述了几种可能的通过磁斯格明子表达二进制信息元的方法;并展望了磁斯格明子的其他潜在应用以及未来基于磁斯格明子器件应用的发展方向.
    Magnetic skyrmions possess topologically non-trivial particle-like nanoscale domain wall structures, which have reasonably good stability and unique dynamic properties and can be controlled by magnetic fields, electric fields, and electric currents. Therefore, magnetic skyrmions are expected to be used as novel information carriers in the next-generation high-density, low-energy-consumption, and non-volatile information storage and logic computing devices. Since the first experimental observation of magnetic skyrmions in 2009, a number of skyrmion-based device prototypes have been proposed. In this article, we review the recently proposed skyrmion-based devices and applications, including skyrmion-based racetrack memory, logic computing device, transistor-like functional device, and nano-oscillator. We first discuss advantages of skyrmion-based racetrack memory and solutions for some problems we are facing currently. We then introduce the duplication and merging of magnetic skyrmions and the skyrmion-based logic OR and AND gates. We also introduce the switch function of skyrmion-based transistor-like functional device. The switch function is realized via a voltage gate and controlled by the applied voltage as well as the driving spin current. Besides, a brief introduction of the skyrmion-based nano-oscillator is given. In addition, we introduce several possible methods to encode binary information in skyrmion-based devices. Finally, we discuss some possible future novel applications based on magnetic skyrmions.
      通信作者: 周艳, zhouyan@cuhk.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574137)、深圳基础研究基金(批准号:JCYJ20160331164412545,JCYJ20170410171958839)和香港中文大学(深圳)校长基金资助的课题.
      Corresponding author: Zhou Yan, zhouyan@cuhk.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574137), Shenzhen Fundamental Research Fund, China (Grant Nos. JCYJ20160331164412545, JCYJ20170410171958839), and the President's Fund of CUHKSZ.
    [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [4]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203

    [5]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [6]

    Du H, DeGrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S 2014 Nano Lett. 14 2026

    [7]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [8]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [9]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, Chang J 2018 Nat. Commun. 9 959

    [10]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [11]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542

    [14]

    Bogdanov A, Hubert A 1994 J. Magn. Magn. Mater. 138 255

    [15]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano. Lett. 18 980

    [16]

    Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430

    [17]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [18]

    Leonov A O, Mostovoy M 2017 Nat. Commun. 8 14394

    [19]

    Zhang X, Xia J, Zhou Y, Liu X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717

    [20]

    Hu Y, Chi X, Li X, Liu Y, Du A 2017 Sci. Rep. 7 16079

    [21]

    Yuan H Y, Gomonay O, Klui M 2017 Phys. Rev. B 96 134415

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [23]

    Wang C, Xiao D, Chen X, Zhou Y, Liu Y 2017 New J. Phys. 19 083008

    [24]

    Mochizuki M 2017 Appl. Phys. Lett. 111 092403

    [25]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742

    [26]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [27]

    Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M, Beach G S D 2016 Nat. Mater. 15 501

    [28]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [29]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [30]

    Ma C, Zhang X, Yamada Y, Xia J, Ezawa M, Jiang W, Zhou Y, Morisako A, Liu X 2017 arXiv:170802023v2 [cond-mat.mes-hall]

    [31]

    Xia H, Song C, Jin C, Wang J, Wang J, Liu Q 2018 J. Magn. Magn. Mater. 458 57

    [32]

    Wang J, Xia J, Zhang X, Zhao G P, Ye L, Wu J, Xu Y, Zhao W, Zou Z, Zhou Y 2018 J. Phys. D: Appl. Phys. 51 205002

    [33]

    Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y W, Zhou Y 2015 Nanotechnology 26 225701

    [34]

    Li S, Xia J, Zhang X, Ezawa M, Kang W, Liu X, Zhou Y, Zhao W 2018 Appl. Phys. Lett. 112 142404

    [35]

    Liu Y, Yin G, Zang J, Shi J, Lake R K 2015 Appl. Phys. Lett. 107 152411

    [36]

    Ma F, Ezawa M, Zhou Y 2015 Sci. Rep. 5 15154

    [37]

    Wang W, Beg M, Zhang B, Kuch W, Fangohr H 2015 Phys. Rev. B 92 020403

    [38]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [39]

    Wu H C, Chandrasekhar K D, Wei T Y, Hsieh K J, Chen T Y, Berger H, Yang H D 2015 J. Phys. D: Appl. Phys. 48 475001

    [40]

    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y, Iwasa Y 2015 Nat. Commun. 6 8539

    [41]

    Liu Y, Lei N, Zhao W, Liu W, Ruotolo A, Braun H B, Zhou Y 2017 Appl. Phys. Lett. 111 022406

    [42]

    Yang W, Yang H, Cao Y, Yan P 2018 Opt. Express 26 8778

    [43]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [44]

    Kong L Y, Zang J D 2013 Phys. Rev. Lett. 111 067203

    [45]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [47]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovcs A, Tian M, Zhang Y, Blgel S, Dunin Borkowski R E 2018 Nat. Nanotech.

    [48]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [49]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [50]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [51]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [52]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [53]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [54]

    Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas D, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640

    [55]

    Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K, Ono T 2011 Nat. Mater. 10 194

    [56]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [57]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Bni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [58]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [59]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898

    [60]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [61]

    Xing X, Pong P W T, Zhou Y 2016 Phys. Rev. B 94 054408

    [62]

    Zhang X C, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [63]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [64]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 64 067503]

    [65]

    Zhang X C, Zhou Y, Ezawa M, Zhao G P, Zhao W 2015 Sci. Rep. 5 11369

    [66]

    Kim J S, Jung S, Jung M H, You C Y, Swagten H J M, Koopmans B 2014 arXiv:14016910v1 [cond-mat.mes-hall]

    [67]

    Schellekens A J, van den Brink A, Franken J H, Swagten H J M, Koopmans B 2012 Nat. Commun. 3 847

    [68]

    Shiota Y, Murakami S, Bonell F, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Express 4 043005

    [69]

    Kim J V, Garcia Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V, Fert A 2014 Phys. Rev. B 90 064410

    [70]

    Dai Y, Wang H, Yang T, Ren W, Zhang Z 2014 Sci. Rep. 4 6153

    [71]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, kerman J 2015 Nat. Commun. 6 8193

    [72]

    Li Z X, Chen Y F, Zhou Z W, Nie Y Z, Xia Q L, Wang D W, Guo G H 2017 J. Magn. Magn. Mater. 433 216

    [73]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [74]

    Rippard W H, Pufall M R, Kaka S, Russek S E, Silva T J 2004 Phys. Rev. Lett. 92 027201

    [75]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [76]

    Chui C P, Zhou Y 2015 AIP Adv. 5 097126

    [77]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [78]

    Jin C, Wang J, Wang W, Song C, Wang J, Xia H, Liu Q 2018 Phys. Rev. Appl. 9 044007

    [79]

    Huang Y, Kang W, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 08LT02

    [80]

    Li S, Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 31LT01

  • [1]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [2]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [3]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blgel S 2011 Nat. Phys. 7 713

    [4]

    Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R 2015 Phys. Rev. Lett. 114 177203

    [5]

    Chen G, Mascaraque A, N'Diaye A T, Schmid A K 2015 Appl. Phys. Lett. 106 242404

    [6]

    Du H, DeGrave J P, Xue F, Liang D, Ning W, Yang J, Tian M, Zhang Y, Jin S 2014 Nano Lett. 14 2026

    [7]

    Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283

    [8]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [9]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S I, Park S Y, Kim Y, Kim J Y, Lee D, Lee O, Choi J W, Min B C, Koo H C, Chang J 2018 Nat. Commun. 9 959

    [10]

    Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203

    [11]

    Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542

    [14]

    Bogdanov A, Hubert A 1994 J. Magn. Magn. Mater. 138 255

    [15]

    Yu G, Jenkins A, Ma X, Razavi S A, He C, Yin G, Shao Q, He Q L, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich A C, Amiri P K, Wang K L 2018 Nano. Lett. 18 980

    [16]

    Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430

    [17]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [18]

    Leonov A O, Mostovoy M 2017 Nat. Commun. 8 14394

    [19]

    Zhang X, Xia J, Zhou Y, Liu X, Zhang H, Ezawa M 2017 Nat. Commun. 8 1717

    [20]

    Hu Y, Chi X, Li X, Liu Y, Du A 2017 Sci. Rep. 7 16079

    [21]

    Yuan H Y, Gomonay O, Klui M 2017 Phys. Rev. B 96 134415

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [23]

    Wang C, Xiao D, Chen X, Zhou Y, Liu Y 2017 New J. Phys. 19 083008

    [24]

    Mochizuki M 2017 Appl. Phys. Lett. 111 092403

    [25]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742

    [26]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. 8 839

    [27]

    Woo S, Litzius K, Kruger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klaui M, Beach G S D 2016 Nat. Mater. 15 501

    [28]

    Yuan H Y, Wang X R 2016 Sci. Rep. 6 22638

    [29]

    Upadhyaya P, Yu G, Amiri P K, Wang K L 2015 Phys. Rev. B 92 134411

    [30]

    Ma C, Zhang X, Yamada Y, Xia J, Ezawa M, Jiang W, Zhou Y, Morisako A, Liu X 2017 arXiv:170802023v2 [cond-mat.mes-hall]

    [31]

    Xia H, Song C, Jin C, Wang J, Wang J, Liu Q 2018 J. Magn. Magn. Mater. 458 57

    [32]

    Wang J, Xia J, Zhang X, Zhao G P, Ye L, Wu J, Xu Y, Zhao W, Zou Z, Zhou Y 2018 J. Phys. D: Appl. Phys. 51 205002

    [33]

    Zhang X, Ezawa M, Xiao D, Zhao G P, Liu Y W, Zhou Y 2015 Nanotechnology 26 225701

    [34]

    Li S, Xia J, Zhang X, Ezawa M, Kang W, Liu X, Zhou Y, Zhao W 2018 Appl. Phys. Lett. 112 142404

    [35]

    Liu Y, Yin G, Zang J, Shi J, Lake R K 2015 Appl. Phys. Lett. 107 152411

    [36]

    Ma F, Ezawa M, Zhou Y 2015 Sci. Rep. 5 15154

    [37]

    Wang W, Beg M, Zhang B, Kuch W, Fangohr H 2015 Phys. Rev. B 92 020403

    [38]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [39]

    Wu H C, Chandrasekhar K D, Wei T Y, Hsieh K J, Chen T Y, Berger H, Yang H D 2015 J. Phys. D: Appl. Phys. 48 475001

    [40]

    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y, Iwasa Y 2015 Nat. Commun. 6 8539

    [41]

    Liu Y, Lei N, Zhao W, Liu W, Ruotolo A, Braun H B, Zhou Y 2017 Appl. Phys. Lett. 111 022406

    [42]

    Yang W, Yang H, Cao Y, Yan P 2018 Opt. Express 26 8778

    [43]

    Koshibae W, Nagaosa N 2014 Nat. Commun. 5 5148

    [44]

    Kong L Y, Zang J D 2013 Phys. Rev. Lett. 111 067203

    [45]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [46]

    Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293

    [47]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovcs A, Tian M, Zhang Y, Blgel S, Dunin Borkowski R E 2018 Nat. Nanotech.

    [48]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [49]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [50]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [51]

    Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M, Finocchio G 2014 Sci. Rep. 4 6784

    [52]

    Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2016 Proc. IEEE 104 2040

    [53]

    Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J, Morvan F J 2015 Sci. Rep. 5 7643

    [54]

    Lepadatu S, Saarikoski H, Beacham R, Benitez M J, Moore T A, Burnell G, Sugimoto S, Yesudas D, Wheeler M C, Miguel J, Dhesi S S, McGrouther D, McVitie S, Tatara G, Marrows C H 2017 Sci. Rep. 7 1640

    [55]

    Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K, Ono T 2011 Nat. Mater. 10 194

    [56]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [57]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Bni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [58]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [59]

    Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898

    [60]

    Kang W, Zheng C, Huang Y, Zhang X, Zhou Y, L W, Zhao W 2016 IEEE Electron Device Lett. 37 924

    [61]

    Xing X, Pong P W T, Zhou Y 2016 Phys. Rev. B 94 054408

    [62]

    Zhang X C, Ezawa M, Zhou Y 2015 Sci. Rep. 5 9400

    [63]

    Zhou Y, Ezawa M 2014 Nat. Commun. 5 4652

    [64]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503 (in Chinese) [张志东 2015 64 067503]

    [65]

    Zhang X C, Zhou Y, Ezawa M, Zhao G P, Zhao W 2015 Sci. Rep. 5 11369

    [66]

    Kim J S, Jung S, Jung M H, You C Y, Swagten H J M, Koopmans B 2014 arXiv:14016910v1 [cond-mat.mes-hall]

    [67]

    Schellekens A J, van den Brink A, Franken J H, Swagten H J M, Koopmans B 2012 Nat. Commun. 3 847

    [68]

    Shiota Y, Murakami S, Bonell F, Nozaki T, Shinjo T, Suzuki Y 2011 Appl. Phys. Express 4 043005

    [69]

    Kim J V, Garcia Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V, Fert A 2014 Phys. Rev. B 90 064410

    [70]

    Dai Y, Wang H, Yang T, Ren W, Zhang Z 2014 Sci. Rep. 4 6153

    [71]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, kerman J 2015 Nat. Commun. 6 8193

    [72]

    Li Z X, Chen Y F, Zhou Z W, Nie Y Z, Xia Q L, Wang D W, Guo G H 2017 J. Magn. Magn. Mater. 433 216

    [73]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [74]

    Rippard W H, Pufall M R, Kaka S, Russek S E, Silva T J 2004 Phys. Rev. Lett. 92 027201

    [75]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [76]

    Chui C P, Zhou Y 2015 AIP Adv. 5 097126

    [77]

    Zhang S F, Wang J B, Zheng Q, Zhu Q Y, Liu X Y, Chen S J, Jin C D, Liu Q F, Jia C L, Xue D S 2015 New J. Phys. 17 023061

    [78]

    Jin C, Wang J, Wang W, Song C, Wang J, Xia H, Liu Q 2018 Phys. Rev. Appl. 9 044007

    [79]

    Huang Y, Kang W, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 08LT02

    [80]

    Li S, Kang W, Huang Y, Zhang X, Zhou Y, Zhao W 2017 Nanotechnology 28 31LT01

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 张蕾. 斯格明子相关的螺旋磁有序体系的临界行为.  , 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [3] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究.  , 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [4] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储.  , 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [5] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应.  , 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [6] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [7] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响.  , 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [8] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [9] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构.  , 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [11] 罗礼进, 仲崇贵, 方靖淮, 赵永林, 周朋霞, 江学范. Heusler合金Mn2 NiAl的电子结构和磁性对四方畸变的响应及其压力响应.  , 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [12] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [13] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [14] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [15] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性.  , 2010, 59(5): 3432-3437. doi: 10.7498/aps.59.3432
    [16] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性.  , 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [17] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [19] 施一生. Fe1-xPdx合金电子结构和磁性的理论研究.  , 2003, 52(4): 993-998. doi: 10.7498/aps.52.993
    [20] 谭明秋, 陶向明, 何军辉. SrRuO3的电子结构与磁性研究.  , 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
计量
  • 文章访问数:  11720
  • PDF下载量:  852
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-05
  • 修回日期:  2018-05-24
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map