搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非局域高次非线性介质中的多极暗孤子

郑一帆 黄光侨 林机

引用本文:
Citation:

非局域高次非线性介质中的多极暗孤子

郑一帆, 黄光侨, 林机

Multi-pole dark solitons in nonlocal and cubic-quintic nonlinear medium

Zheng Yi-Fan, Huang Guang-Qiao, Lin Ji
PDF
导出引用
  • 研究一维非局域三-五次非线性模型下,暗孤子和多极暗孤子的新解和传输特性.发现非局域程度和非线性参量变化对暗孤子的峰值和束宽产生影响,并且在特定的竞争非局域非线性参数下存在稳定基态暗孤子和多极暗孤子的束缚态.另外,讨论了在局域自聚焦三次和非局域自散焦五次非线性介质中暗孤子和两极暗孤子的传输特性,发现孤子比在自散焦三次和自聚焦五次的非线性介质中传输更加稳定.进一步研究了单暗孤子和三极暗孤子的功率与传播常数和非局域程度的关系,并讨论了不同类型暗孤子的线性稳定性问题.
    In this paper, we mainly simulate the characteristics of the ground state dark soliton and the multipole dark soliton in the nonlocal and cubic-quintic nonlinear medium. Firstly, the influences of the degree of nonlocality on the amplitude and the width of the dark soliton in the self-defocusing cubic-and self-focusing quantic-nonlinear medium are studied. Secondly, we find the nonlinear parameters affecting the amplitude values of solitons, but the refractive index induced by the light beam is always a fixed value. The numerical results show that the ground state dark soliton can be propagated stably alone the z axis, and the stable states of the dipole soliton and the dark tri-pole and quadru-pole solitons are stable. However, some quadru-pole dark soliton is unstable after propagating the remote distance. Furthermore, we also discuss the characteristics of the ground state dark soliton and the dark dipole soliton in the local cubic-nonlinear and nonlocal quantic nonlinear media. Both the amplitude and the beam width of the dark ground state soliton and dark dipole soliton are also affected by the degree of nonlocality and nonlinearity. Two boundary values of the induced refractive index change with the variations of the three nonlinear parameters. The dark soliton and the dipole dark soliton are more stable in the self-focusing cubic nonlinear and the nonlocal self-defocusing quantic nonlinear medium than those in the self defocusing cubic nonlinear and nonlocal self-focusing quantic nonlinear medium. The powers of single dark soliton and dark tri-pole soliton decrease monotonically with the increase of propagation constant when the cubic-quintic nonlinearities are certain values and these degrees of nonlocalities are taken different values. Furthermore, we also analyze linear stabilities of various nonlocal spatial dark solitons. And we find that the dipole dark soliton is unstable when the propagation constant is in the region[-0.9,-1.0]. These properties of linear stabilities of other multi-pole dark solitons are the same as their propagation properties.
      通信作者: 林机, linji@zjnu.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号:LZ15A050001)和国家自然科学基金(批准号:11675146,11835011)资助的课题.
      Corresponding author: Lin Ji, linji@zjnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ15A050001) and the National Natural Science Foundation of China (Grant Nos. 11675146, 11835011).
    [1]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006 Phys. Rev. E 74 066614

    [2]

    Doktorov E V, Molchan M A 2008 J. Phys. A: Math. Theor. 41 315101

    [3]

    Tsoy E N 2010 Phys. Rev. A 82 063829

    [4]

    Huang G Q, Lin J 2017 Acta Phys. Sin. 66 054208 (in Chinese)[黄光桥, 林机 2017 66 054208]

    [5]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [6]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [7]

    Gao X H, Wang J, Zhou L H, Yang Z J, Ma X K, Lu D Q, Guo Q, Hu W 2014 Opt. Lett. 39 3760

    [8]

    Quyang S G, Guo Q 2009 Opt. Express 17 5170

    [9]

    Quyang S G, Hu W, Guo Q 2012 Chin. Phys. B 21 040505

    [10]

    Fischer R, Neshev D N, Krolikowski W, Kivshar Y S, Castillo D I, Cerda S C, Meneghetti M R, Caetano D P, Hickman J M 2006 Opt. Lett. 31 3010

    [11]

    Pu S Z, Hou C F, Zhan K Y, Yuan C X 2012 Phys. Scr. 85 015402

    [12]

    Bland T, Edmonds M J, Proukakis N P, Martin A M, O'Dell D H J, Parker N G 2015 Phys. Rev. A 92 063601

    [13]

    Kong Q, Wang Q, Bang O, Krolikowski W 2010 Opt. Lett. 35 2152

    [14]

    Kong Q, Wang Q, Bang O, Krolikowski W 2010 Phys. Rev. A 82 013826

    [15]

    Chen W, Shen M, Kong Q, Shi J L, Wang Q, Krolikowski W 2014 Opt. Lett. 39 1764

    [16]

    Xu Z Y, Kartashov Y V, Torner L 2005 Opt. Lett. 30 3171

    [17]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese)[周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 60 044208]

    [18]

    Ghofraniha N, Amato L, Folli V, Trillo S, DelRe E, Conti C 2012 Opt. Lett. 37 2325

    [19]

    Pelinovsky D E, Kivshar Y S, Afanasjev V V 1996 Phys. Rev. E 54 2015

    [20]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348

    [21]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011 J. Opt. Soc. Am. B 28 1583

    [22]

    Hu Y H, Lou S Y 2015 Commun. Theor. Phys. 64 665

    [23]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese)[高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 62 044214]

  • [1]

    Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, Malomed B A 2006 Phys. Rev. E 74 066614

    [2]

    Doktorov E V, Molchan M A 2008 J. Phys. A: Math. Theor. 41 315101

    [3]

    Tsoy E N 2010 Phys. Rev. A 82 063829

    [4]

    Huang G Q, Lin J 2017 Acta Phys. Sin. 66 054208 (in Chinese)[黄光桥, 林机 2017 66 054208]

    [5]

    Snyder A W, Mitchell D J 1997 Science 276 1538

    [6]

    Nikolov N I, Neshev D, Krolikowski W, Bang O, Rasmussen J J, Christiansen P L 2004 Opt. Lett. 29 286

    [7]

    Gao X H, Wang J, Zhou L H, Yang Z J, Ma X K, Lu D Q, Guo Q, Hu W 2014 Opt. Lett. 39 3760

    [8]

    Quyang S G, Guo Q 2009 Opt. Express 17 5170

    [9]

    Quyang S G, Hu W, Guo Q 2012 Chin. Phys. B 21 040505

    [10]

    Fischer R, Neshev D N, Krolikowski W, Kivshar Y S, Castillo D I, Cerda S C, Meneghetti M R, Caetano D P, Hickman J M 2006 Opt. Lett. 31 3010

    [11]

    Pu S Z, Hou C F, Zhan K Y, Yuan C X 2012 Phys. Scr. 85 015402

    [12]

    Bland T, Edmonds M J, Proukakis N P, Martin A M, O'Dell D H J, Parker N G 2015 Phys. Rev. A 92 063601

    [13]

    Kong Q, Wang Q, Bang O, Krolikowski W 2010 Opt. Lett. 35 2152

    [14]

    Kong Q, Wang Q, Bang O, Krolikowski W 2010 Phys. Rev. A 82 013826

    [15]

    Chen W, Shen M, Kong Q, Shi J L, Wang Q, Krolikowski W 2014 Opt. Lett. 39 1764

    [16]

    Xu Z Y, Kartashov Y V, Torner L 2005 Opt. Lett. 30 3171

    [17]

    Zhou L H, Gao X H, Yang Z J, Lu D Q, Guo Q, Cao W W, Hu W 2011 Acta Phys. Sin. 60 044208 (in Chinese)[周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍 2011 60 044208]

    [18]

    Ghofraniha N, Amato L, Folli V, Trillo S, DelRe E, Conti C 2012 Opt. Lett. 37 2325

    [19]

    Pelinovsky D E, Kivshar Y S, Afanasjev V V 1996 Phys. Rev. E 54 2015

    [20]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348

    [21]

    Zhou Z X, Du Y W, Hou C F, Tian H, Wang Y 2011 J. Opt. Soc. Am. B 28 1583

    [22]

    Hu Y H, Lou S Y 2015 Commun. Theor. Phys. 64 665

    [23]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese)[高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 62 044214]

  • [1] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输.  , 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [2] 欧阳世根. 自散焦非局域非线性材料中的光学涡旋孤子.  , 2013, 62(4): 040504. doi: 10.7498/aps.62.040504
    [3] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析.  , 2012, 61(15): 154211. doi: 10.7498/aps.61.154211
    [4] 王靖, 郑一周, 周罗红, 杨振军, 陆大全, 郭旗, 胡巍. 非局域自散焦克尔介质中空间光暗孤子成丝的理论与实验研究.  , 2012, 61(8): 084210. doi: 10.7498/aps.61.084210
    [5] 张霞萍, 刘友文. 强非局域非线性介质中拉盖尔-高斯型光孤子相互作用.  , 2011, 60(8): 084212. doi: 10.7498/aps.60.084212
    [6] 周罗红, 高星辉, 杨振军, 陆大全, 郭旗, 曹伟文, 胡巍. 非局域非线性介质中空间暗孤子的理论和实验研究.  , 2011, 60(4): 044208. doi: 10.7498/aps.60.044208
    [7] 李少华, 杨振军, 陆大全, 胡巍. 厄米-高斯光束在热非局域介质中传输的数值模拟研究.  , 2011, 60(2): 024214. doi: 10.7498/aps.60.024214
    [8] 杨振军, 李少华, 陆大全, 胡巍. 非局域非线性克尔介质中两极孤子的变分解.  , 2010, 59(7): 4707-4714. doi: 10.7498/aps.59.4707
    [9] 徐四六, 刘会平, 易林. 强非局域非线性介质中的二维库墨-高斯孤子簇.  , 2010, 59(2): 1069-1074. doi: 10.7498/aps.59.1069
    [10] 江群, 寿倩, 郑亚建, 梁炎斌, 胡巍, 郭旗. 非局域空间光孤子在矩形边界铅玻璃中偏转研究.  , 2010, 59(1): 329-335. doi: 10.7498/aps.59.329
    [11] 戴继慧, 郭旗. 强非局域非线性介质中的旋转涡旋光孤子.  , 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [12] 梁炎斌, 郑亚建, 杨平保, 曹龙贵, 陆大全, 胡 巍, 郭 旗. 有界非局域非线性介质中空间光孤子传输的研究.  , 2008, 57(9): 5690-5698. doi: 10.7498/aps.57.5690
    [13] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解.  , 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [14] 戴继慧, 郭 旗, 史信荣. 强非局域非线性介质中的涡旋光孤子.  , 2007, 56(8): 4642-4647. doi: 10.7498/aps.56.4642
    [15] 张霞萍, 郭 旗, 胡 巍. 强非局域非线性介质中光束传输的空间光孤子解.  , 2005, 54(11): 5189-5193. doi: 10.7498/aps.54.5189
    [16] 黄春福, 郭儒, 刘思敏, 舒强, 高垣梅, 汪大云, 刘照红, 张小华, 陆猗. 在LiNbO3:Fe晶体中暗辐照对光束从自散焦向自聚焦转换过程的影响.  , 2004, 53(5): 1367-1372. doi: 10.7498/aps.53.1367
    [17] 郭 旗, 许超彬. 偏离束腰入射对非局域非线性介质中高斯光束演化的影响.  , 2004, 53(9): 3025-3032. doi: 10.7498/aps.53.3025
    [18] 郭旗, 田野, 刘承宜. 自散焦介质中光束聚焦的最佳参数选择.  , 2002, 51(5): 1057-1062. doi: 10.7498/aps.51.1057
    [19] 刘思敏, 汪大云, 赵红娥, 李祖斌, 郭儒, 陆猗, 黄春福, 高垣梅. 从自散焦到自聚焦的动态转换和相位共轭亮空间孤子.  , 2002, 51(12): 2761-2766. doi: 10.7498/aps.51.2761
    [20] 佘卫龙, 何穗荣, 汪河洲, 余振新, 莫党. 热自聚焦诱导光折变非对称自散焦.  , 1996, 45(12): 2022-2026. doi: 10.7498/aps.45.2022
计量
  • 文章访问数:  5501
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 修回日期:  2018-07-30
  • 刊出日期:  2018-11-05

/

返回文章
返回
Baidu
map