-
斯格明子(skyrmion)磁序结构与晶体微观结构的关联是新型功能磁材料和器件研发的重要问题.本文利用微纳加工技术制备了形状、尺寸均可控的磁纳米结构,通过电子全息术观察定量地分析了斯格明子磁序结构,确定了材料晶格缺陷和空间受限效应对斯格明子磁结构形成和稳定机制的影响,系统地分析了斯格明子基元的磁功能与材料微结构的关联.文中主要探讨了两个问题:1)斯格明子在磁纳米结构中的空间受限效应.重点研究斯格明子磁序随外磁场和温度变化的演变规律,探索其演变过程的拓扑属性和稳定性;2)晶格缺陷对斯格明子磁结构的影响,重点考察晶界原子结构手性反转对斯格明子磁序的影响.这些研究结果可为研发以磁斯格明子为基元的磁信息存储器及自旋电子学器件提供重要实验基础.
-
关键词:
- 磁斯格明子 /
- 磁纳米结构 /
- 洛伦兹透射电子显微镜 /
- 电子全息术
Understanding the correlations between magnetic skyrmions and the microstructural characteristics of the crystals that host skyrmions is a key issue for fundamental research and practical applications of novel type of magnetic materials. Magnetic skyrmion has received great attention due to its non-trivial topological properties and stability. Here we focus on two important points:1) dimensional confinement effects on magnetic skyrmions in magnetic nanostructures, specifically, the magnetic evolution, its related topological properties and energetic stability in confined nanostructured geometries; 2) effects of crystallographic defects on magnetic skyrmions, such as the pinning effect of magnetic skyrmion by crystal defects, and the effect of crystallographic-magnetic chirality reversal at crystal grain boundaries. For the study of dimensional effects on skyrmions in confined nanoscale geometries, we use state-of-the-art electron holography to directly image the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in a range of 45-150 nm. Our experimental results reveal that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticity in a nanostripe, which are not existent in thin films nor bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We further perform micromagnetic simulations to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices. For studying the effects of crystallographic defects on magnetic skyrmions, we use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. The measurements of spin configurations at grain boundaries reveal the crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, our results show that skyrmion lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. These findings offer an insight into the elasticity of topologically protected skyrmions and their correlation with underlying material defects. Our electron holography results provide a quantitative determination of the fine skyrmionic spin textures in magnetic nanostructures. The resolved spin textures will be correlated with the material microstructures to provide important information about the relationship between the magnetic functions and the material microstructures. Our experiments also highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.[1] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[2] Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899
[3] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915
[4] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
[5] Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648
[6] Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152
[8] Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101
[9] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
[10] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[11] Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403
[12] Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401
[13] Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504
[14] Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001
[15] Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102
[16] Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA
[17] Teague M 1983 J. Opt. Soc. Am. 73 1434
[18] Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586
[19] Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271
[20] Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304
[21] Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856
[22] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198
[23] Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887
[24] Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203
[25] McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57
[26] McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004
[27] Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280
[28] Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337
[29] Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202
[30] Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410
[31] Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
[32] Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[33] Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395
[34] Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204
[35] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451
[36] Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422
[37] Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424
[38] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839
[39] Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478
-
[1] Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241
[2] Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899
[3] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915
[4] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602
[5] Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648
[6] Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463
[7] Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152
[8] Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101
[9] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901
[10] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106
[11] Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403
[12] Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401
[13] Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504
[14] Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001
[15] Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102
[16] Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA
[17] Teague M 1983 J. Opt. Soc. Am. 73 1434
[18] Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586
[19] Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271
[20] Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304
[21] Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856
[22] Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198
[23] Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887
[24] Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203
[25] McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57
[26] McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004
[27] Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280
[28] Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337
[29] Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202
[30] Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410
[31] Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569
[32] Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205
[33] Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395
[34] Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204
[35] Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451
[36] Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422
[37] Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424
[38] Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839
[39] Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478
计量
- 文章访问数: 6867
- PDF下载量: 363
- 被引次数: 0