搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米结构中磁斯格明子的原位电子全息研究

李子安 柴可 张明 朱春辉 田焕芳 杨槐馨

引用本文:
Citation:

纳米结构中磁斯格明子的原位电子全息研究

李子安, 柴可, 张明, 朱春辉, 田焕芳, 杨槐馨

In situ electron holography of magnetic skyrmions in nanostructures

Li Zi-An, Chai Ke, Zhang Ming, Zhu Chun-Hui, Tian Huan-Fang, Yang Huai-Xin
PDF
导出引用
  • 斯格明子(skyrmion)磁序结构与晶体微观结构的关联是新型功能磁材料和器件研发的重要问题.本文利用微纳加工技术制备了形状、尺寸均可控的磁纳米结构,通过电子全息术观察定量地分析了斯格明子磁序结构,确定了材料晶格缺陷和空间受限效应对斯格明子磁结构形成和稳定机制的影响,系统地分析了斯格明子基元的磁功能与材料微结构的关联.文中主要探讨了两个问题:1)斯格明子在磁纳米结构中的空间受限效应.重点研究斯格明子磁序随外磁场和温度变化的演变规律,探索其演变过程的拓扑属性和稳定性;2)晶格缺陷对斯格明子磁结构的影响,重点考察晶界原子结构手性反转对斯格明子磁序的影响.这些研究结果可为研发以磁斯格明子为基元的磁信息存储器及自旋电子学器件提供重要实验基础.
    Understanding the correlations between magnetic skyrmions and the microstructural characteristics of the crystals that host skyrmions is a key issue for fundamental research and practical applications of novel type of magnetic materials. Magnetic skyrmion has received great attention due to its non-trivial topological properties and stability. Here we focus on two important points:1) dimensional confinement effects on magnetic skyrmions in magnetic nanostructures, specifically, the magnetic evolution, its related topological properties and energetic stability in confined nanostructured geometries; 2) effects of crystallographic defects on magnetic skyrmions, such as the pinning effect of magnetic skyrmion by crystal defects, and the effect of crystallographic-magnetic chirality reversal at crystal grain boundaries. For the study of dimensional effects on skyrmions in confined nanoscale geometries, we use state-of-the-art electron holography to directly image the morphology and nucleation of magnetic skyrmions in a wedge-shaped FeGe nanostripe that has a width in a range of 45-150 nm. Our experimental results reveal that geometrically-confined skyrmions are able to adopt a wide range of sizes and ellipticity in a nanostripe, which are not existent in thin films nor bulk materials and can be created from a helical magnetic state with a distorted edge twist in a simple and efficient manner. We further perform micromagnetic simulations to confirm our experimental results. The flexibility and ease of formation of geometrically confined magnetic skyrmions may help to optimize the design of skyrmion-based memory devices. For studying the effects of crystallographic defects on magnetic skyrmions, we use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. The measurements of spin configurations at grain boundaries reveal the crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, our results show that skyrmion lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. These findings offer an insight into the elasticity of topologically protected skyrmions and their correlation with underlying material defects. Our electron holography results provide a quantitative determination of the fine skyrmionic spin textures in magnetic nanostructures. The resolved spin textures will be correlated with the material microstructures to provide important information about the relationship between the magnetic functions and the material microstructures. Our experiments also highlight the applicability of state-of-the-art electron holography for the study of complex spin textures in nanostructures.
      通信作者: 李子安, zali79@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11774403)和国家重点研发计划(批准号:2017YFA0303000,2017YFA0302904)资助的课题.
      Corresponding author: Li Zi-An, zali79@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774403) and the National Key Research and Development Program of China (Grant Nos. 2017YFA0303000,2017YFA0302904).
    [1]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [2]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [5]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [6]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [8]

    Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101

    [9]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403

    [12]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [13]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [14]

    Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001

    [15]

    Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102

    [16]

    Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA

    [17]

    Teague M 1983 J. Opt. Soc. Am. 73 1434

    [18]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [19]

    Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271

    [20]

    Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304

    [21]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856

    [22]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [23]

    Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [24]

    Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203

    [25]

    McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57

    [26]

    McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004

    [27]

    Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280

    [28]

    Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337

    [29]

    Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202

    [30]

    Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410

    [31]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [32]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [33]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [34]

    Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204

    [35]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451

    [36]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [37]

    Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424

    [38]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839

    [39]

    Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478

  • [1]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [2]

    Nagaosa N, Tokura Y 2013 Nat. Nanotech. 8 899

    [3]

    Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [4]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [5]

    Jonietz F, Muhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Boni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648

    [6]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Commum. 4 1463

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152

    [8]

    Bogdanov A N, Yablonskii D A 1989 Soc. Phys. JETP 68 101

    [9]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H., Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Butenko A B, Leonov A A, Roessler U K, Bogdanov A N 2010 Phys. Rev. B 82 52403

    [12]

    Du H, Ning W, Tian M, Zhang Y 2013 Phys. Rev. B 87 014401

    [13]

    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C. Q, Chen X H, Zang J, Zhang Y, Tian M 2015 Nat. Commun. 6 8504

    [14]

    Nagao M, So Y G, Yoshida H, Nagai T, Edagawa K, SaitKo T, Hara T, Yamazaki A, Kimoto K 2015 Appl. Phys. Express 8 033001

    [15]

    Lichte H, Lehmann M 2008 Rep. Prog. Phys. 71 16102

    [16]

    Dunin-Borkowski R E, Kasama K, Beleggia M, Pozzi G 2012 WILEY-VCH GmbH Co. KGaA

    [17]

    Teague M 1983 J. Opt. Soc. Am. 73 1434

    [18]

    Paganin D, Nugent K A 1998 Phys. Rev. Lett. 80 2586

    [19]

    Volkov V V, Zhu Y 2004 Ultramicroscopy 98 271

    [20]

    Cui J, Yao Y, Shen X, Wang Y G, Yu R C 2018 J. Magn. Magn. Mater. 454 304

    [21]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 PNAS 109 8856

    [22]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [23]

    Wang W H, Zhang Y, Xu G Z, Peng L, Ding B, Wang Y, Hou Z P, Zhang X, Li X, Liu E K, Wang S G, Cai J W, Wang F W, Li J Q, Hu F X, Wu G H, Shen B G, Zhang X X 2016 Adv. Mater. 28 6887

    [24]

    Chapman J N, Batson P E, Waddell E M, Ferrier R P 1978 Ultramicroscopy 3 203

    [25]

    McVitie S, McGrouther D, McFadzean S, MacLaren D A, OShea K J, Benitez M J 2015 Ultramicroscopy 152 57

    [26]

    McGrouther D, Lamb R J, Krajnak M, Mcfadzean S, Mcvitie S, Stamps R L, Leonov A O 2016 New J. Phys. 18 095004

    [27]

    Matsumoto T, So Y G, Kohno Y, Sawada H, Ikuhara Y, Shibata N 2016 Sci. Adv. 2 e1501280

    [28]

    Park H S, Yu X Z, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotech. 9 337

    [29]

    Shibata K, Kovcs A, Kiselev N S, Kanazawa N, Dunin-Borkowski R E, Tokura Y 2017 Phys. Rev. Lett. 118 087202

    [30]

    Kovcs A, Caron J, Savchenko A S, Kiselev N S, Shibata K, Li Z A, Kanazawa N, Tokura Y, Blgel S, Dunin-Borkowski R E 2017 Appl. Phys. Lett. 111 192410

    [31]

    Jin C, Li Z A, Kovcs A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blugel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski R E 2017 Nat. Commun. 8 15569

    [32]

    Zheng F, Li H, Wang S, Song D, Jin C, Wei W, Kovacs A, Zang J, Tian M, Du H, Dunin-Borkowski R E 2017 Phys. Rev. Lett. 119 197205

    [33]

    Li Z A, Zheng F, Tavabi A H, Caron J, Jin C, Du H, Kovcs A, Tian M, Farle M, Dunin-Borkowski R E 2017 Nano Lett. 17 1395

    [34]

    Song D, Li Z A, Caron J, Kovcs A, Tian H, Jin C, Du H, Tian M, Li J, Zhu J, Dunin-Borkowski R E 2018 Phys. Rev. Lett. 120 167204

    [35]

    Zheng F, Rybakov F N, Borisov A B, Song D, Wang S, Li Z A, Du H, Kiselev N S, Caron J, Kovacs A, Tian M, Zhang Y, Blgel S, Dunin-Borkowski R E 2018 Nat. Nanotech. 13 451

    [36]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [37]

    Rybakov F N, Borisov A B, Bogdanov A N 2013 Phys. Rev. B 87 094424

    [38]

    Sampaio J, Cros V, Rohart S, Thiaville A, Fert A 2013 Nat. Nanotech. B 8 839

    [39]

    Schwarze T, Waizner J, Garst M, Bauer A, Stasinopoulos I, Berger H, Pfleiderer C, Grundler D 2015 Nat. Mater. 14 478

  • [1] 郭玺, 左亚路, 崔宝山, 申铁龙, 盛彦斌, 席力. 离子辐照对材料磁性的调控及其应用.  , 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [2] 张颖, 李卓霖, 沈保根. 磁畴壁拓扑结构研究进展.  , 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [3] 刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛. 原位液相透射电子显微镜及其在纳米粒子表征方面的应用.  , 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [5] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展.  , 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [6] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理.  , 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [7] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望.  , 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [8] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展.  , 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [9] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用.  , 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控.  , 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [11] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究.  , 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [12] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量.  , 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [13] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响.  , 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [14] 王震遐, 阮美玲, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究.  , 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [15] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究.  , 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [16] 李龙, 李方华, 杨大宇, 田静华, 林振金. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究.  , 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [17] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究.  , 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [18] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究.  , 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [19] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法.  , 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察.  , 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
计量
  • 文章访问数:  6867
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-05-26
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map