搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁/非磁金属异质结中的拓扑霍尔效应

孟康康 赵旭鹏 苗君 徐晓光 赵建华 姜勇

引用本文:
Citation:

铁磁/非磁金属异质结中的拓扑霍尔效应

孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇

Topological Hall effect in ferromagnetic/non-ferromagnetic metals heterojunctions

Meng Kang-Kang, Zhao Xu-Peng, Miao Jun, Xu Xiao-Guang, Zhao Jian-Hua, Jiang Yong
PDF
导出引用
  • 在铁磁/非磁金属异质结中,界面处的Dzyaloshinskii-Moriya相互作用会诱导诸如磁性斯格明子等手性磁畴壁结构的形成.当巡游电子通过手性磁畴壁结构时,会获得一个贝里相位,而相应的贝里曲率则等效于一个外磁场,它将诱导额外的霍尔效应,即拓扑霍尔效应.拓扑霍尔效应是当前磁性斯格明子和自旋电子学研究领域的热点之一.本文由实空间贝里相位出发,简要介绍了拓扑霍尔效应的物理机制;然后着重讨论了铁磁/非磁金属异质结中的拓扑霍尔效应,包括磁性多层膜中和MnGa/重金属双层膜中的拓扑霍尔效应.这两种结构都可以通过改变材料的厚度、种类、生长方式等调控界面Dzyaloshinskii-Moriya相互作用,从而有效地调控磁性斯格明子和拓扑霍尔效应.
    In a magnetic system, the spin orbit coupling can combine with the exchange interaction to generate an anisotropic exchange interaction that favors a chiral arrangement of the magnetization. This is known as the Dzyaloshinskii-Moriya interaction (DMI). Contrary to the Heisenberg exchange interaction, which leads to collinear alignment of lattice spins, the form of DMI is therefore very often to cant the spins by a small angle. If DMI is strong enough to compete with the Heisenberg exchange interaction and the magnetic anisotropy, it can stabilize chiral domain wall structure such as skyrmion. When a conduction electron passes through a chiral domain wall, the spin of the conduction electron will experience a fictitious magnetic field (Berry curvature) in real space, which deflects the conduction electrons perpendicular to the current direction. Therefore, it will cause an additional contribution to the observed Hall signal that is termed topological Hall effect (THE). The THE has attracted much attention since it is a promising tool for probing magnetic skyrmions. Recent extensive experiments have focused on the the THE in the ferromagnetic/non-ferromagnetic metal heterojunctions due to the inherent tunability of magnetic interactions in two dimensions. We firstly review the THE in ferromagnetic multilayers, in which the domain wall energy with interfacial DMI can be written as =4AK-D, where Dis the effective DMI energy constant, A the exchange constant, K the anisotropy constant. For the most favorable chirality, it lowers the energy. The limit of this situation is when goes to zero, which defines the critical DMI energy constant Dc=4AK/. Therefore, the domain wall energy would be negative and the chiral domain walls should proliferate if D Dc, and the methods that can modulate D and Dc to reduce have been explored. We have also reviewed the THE in MnGa/heavy metal bilayers. The largest THE signals have been found based on the MnGa films with smallest Dc, which correspondingly results in the smallest . The large topological portion of the Hall signal from the total Hall signal has been extracted in the whole temperature range from 5 to 300 K and the magnitude of fictitious magnetic field has been determined.
      通信作者: 孟康康, kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn ; 姜勇, kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB921502)和国家自然科学基金(批准号:51731003,61404125,51471029,51671019,11574027,51501007,51602022,61674013,51602025)资助的课题.
      Corresponding author: Meng Kang-Kang, kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn ; Jiang Yong, kkmeng@ustb.edu.cn;yjiang@ustb.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2015CB921502) and the National Natural Science Foundation of China (Grant Nos. 51731003, 61404125, 51471029, 51671019, 11574027, 51501007, 51602022, 61674013, 51602025).
    [1]

    Fert A, Cros V, Sampaio J 2013 Nat. Nano 8 152

    [2]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [3]

    Moriya T 1960 Phys. Rev. 120 91

    [4]

    Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P, Teanovic Z 1999 Phys. Rev. Lett. 83 3737

    [5]

    Bruno P, Dugaev V K, Taillefumier M 2004 Phys. Rev. Lett. 93 096806

    [6]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [7]

    Fert A 1990 Mater. Sci. Forum 59-60 439

    [8]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898

    [9]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [10]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [11]

    Moreau-Luchaire C, Moutas C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nano 11 444

    [12]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [13]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Onur Menteș T, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nano 11 449

    [14]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [15]

    Ueda K, Iguchi S, Suzuki T, Ishiwata S, Taguchi Y, Tokura Y 2012 Phys. Rev. Lett. 102 086601

    [16]

    Shiomi Y, Mochizuki M, Kaneko Y, Tokura Y 2012 Phys. Rev. Lett. 108 056601

    [17]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601

    [18]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [19]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [20]

    Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K, Collin S, Cros V, Fert, A 2018 Nat. Nano. 13 233

    [21]

    Meng K K, Miao J, Xu X G, Xiao J X, Zhao J H, Jiang Y 2016 Phys. Rev. B 93 060406

    [22]

    Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H, Jiang Y 2016 Phys. Rev. B 94 214413

    [23]

    Belabbes A, Bihlmayer G, Bechstedt F, Blgel S, Manchon A 2016 Phys. Rev. Lett. 117 247202

    [24]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407(R)

  • [1]

    Fert A, Cros V, Sampaio J 2013 Nat. Nano 8 152

    [2]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [3]

    Moriya T 1960 Phys. Rev. 120 91

    [4]

    Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P, Teanovic Z 1999 Phys. Rev. Lett. 83 3737

    [5]

    Bruno P, Dugaev V K, Taillefumier M 2004 Phys. Rev. Lett. 93 096806

    [6]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [7]

    Fert A 1990 Mater. Sci. Forum 59-60 439

    [8]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M Y, Petrovi A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898

    [9]

    Li Y, Kanazawa N, Yu X Z, Tsukazaki A, Kawasaki M, Ichikawa M, Jin X F, Kagawa F, Tokura Y 2013 Phys. Rev. Lett. 110 117202

    [10]

    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y 2011 Phys. Rev. Lett. 106 156603

    [11]

    Moreau-Luchaire C, Moutas C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nano 11 444

    [12]

    Woo S, Litzius K, Krger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Klui M, Beach G S D 2016 Nat. Mater. 15 501

    [13]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Onur Menteș T, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussign Y, Stashkevich A, Chrif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nano 11 449

    [14]

    Yang H, Thiaville A, Rohart S, Fert A, Chshiev M 2015 Phys. Rev. Lett. 115 267210

    [15]

    Ueda K, Iguchi S, Suzuki T, Ishiwata S, Taguchi Y, Tokura Y 2012 Phys. Rev. Lett. 102 086601

    [16]

    Shiomi Y, Mochizuki M, Kaneko Y, Tokura Y 2012 Phys. Rev. Lett. 108 056601

    [17]

    Zhang S, Zhang S S L 2009 Phys. Rev. Lett. 102 086601

    [18]

    Rohart S, Thiaville A 2013 Phys. Rev. B 88 184422

    [19]

    Thiaville A, Rohart S, Ju E, Cros V, Fert A 2012 Europhys. Lett. 100 57002

    [20]

    Maccariello D, Legrand W, Reyren N, Garcia K, Bouzehouane K, Collin S, Cros V, Fert, A 2018 Nat. Nano. 13 233

    [21]

    Meng K K, Miao J, Xu X G, Xiao J X, Zhao J H, Jiang Y 2016 Phys. Rev. B 93 060406

    [22]

    Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H, Jiang Y 2016 Phys. Rev. B 94 214413

    [23]

    Belabbes A, Bihlmayer G, Bechstedt F, Blgel S, Manchon A 2016 Phys. Rev. Lett. 117 247202

    [24]

    Meng K K, Zhao X P, Liu P F, Liu Q, Wu Y, Li Z P, Chen J K, Miao J, Xu X G, Zhao J H, Jiang Y 2018 Phys. Rev. B 97 060407(R)

  • [1] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [2] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [3] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变.  , 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [4] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [5] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [6] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [7] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [8] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [9] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [10] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展.  , 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [11] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [12] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展.  , 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [13] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学.  , 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [14] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [15] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [16] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [17] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究.  , 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [18] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [19] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  14521
  • PDF下载量:  1232
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01
  • 修回日期:  2018-05-04
  • 刊出日期:  2018-07-05

/

返回文章
返回
Baidu
map