搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量

张越 侯飞雁 刘涛 张晓斐 张首刚 董瑞芳

引用本文:
Citation:

基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量

张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳

Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide

Zhang Yue, Hou Fei-Yan, Liu Tao, Zhang Xiao-Fei, Zhang Shou-Gang, Dong Rui-Fang
PDF
导出引用
  • 自发参量下转换过程制备的纠缠光源在量子光学及其相关领域有着广泛的应用.本文利用780 nm的分布式布拉格反射镜激光二极管抽运一块长10 mm的Ⅱ类准相位匹配的周期极化铌酸锂波导,产生了偏振正交的频率反关联纠缠光子对.通过实验结果与理论的完美结合得到,当进入波导的抽运光功率为44.9 mW时,下转换双光子对的产生速率为1.87×107 s-1.利用单色仪对下转换光子的频谱进行分析,得到信号和闲置光子的中心波长分别为1561.43 nm和1561.45 nm,频谱宽度为3.62 nm和3.60 nm,双光子符合包络宽度约为3.18 nm,可以得到双光子的频率纠缠度为1.13>1.00,表征了双光子的频率纠缠特性.利用Hong-Ou-Mandel干涉仪测量双光子的二阶量子干涉特性,测得的干涉可见度为96.1%,干涉图谱的凹陷宽度为1.47 ps.
    The frequency entangled photon pairs generated by spontaneous parametric down-conversion (SPDC) possess wide applications in quantum optics and relevant fields.To facilitate the practical quantum information technologies,particularly in optical fiber links,a frequency entangled source at telecommunication wavelength with features of compactness,portability,high efficiency and miniaturization is highly desired.In this paper,we report the experimental generation of a miniaturized frequency entangled source in telecommunication band from a 10 mm-long type-Ⅱ periodically poled lithium niobate (PPLN) waveguide pumped by a 780 nm distributed Bragg reflector (DBR) laser diode.The frequency entangled photon pairs generated by SPDC possess wide applications in quantum optics and relevant fields.When the DBR laser diode is driven by a current of 170 mA at a temperature controlled to 20℃,the output power is measured to be 70.4 mW with a central wavelength of 780.585 nm.Under this pump,the orthogonally-polarized photon pairs are generated and output from the PPLN waveguide.After filtering out the remaining pump by three high-performance long-pass filters mounted on an adjustable U-type fiber bench,the photon-pair generation rate,spectral and temporal properties of the generated frequency entangled source are measured.The results show that the generation rate of the photon pairs,after being corrected for the detection efficiencies of the single photon detectors and the optical losses,is achieved to be 1.86×107 s-1 at a pump power of 44.9 mW (coupled into the waveguide).Optimizing the working temperature of the waveguide and fixing it at 46.5℃,the frequency degeneracy of the SPDC generated photon pairs is realized.Based on the coincidence measurement setup together with two infrared spectrometers,the spectra of the signal and idler photons are obtained with their center wavelengths of 1561.43 nm and 1561.45 nm,and their 3-dB bandwidths of 3.62 nm and 3.60 nm respectively.The joint spectrum of the photon pair is observed,showing a joint spectrum bandwidth of 3.18 nm.The degree of frequency entanglement is quantified to be 1.13 according to the bandwidth ratio between the single photon spectrum and the joint spectrum.Furthermore,based on the Hong-Ou-Mandel (HOM) interferometric coincidence measurement setup,a visibility of about 96.1% is observed,which indicates the very good frequency indistinguishibility of the down-converted biphotons.The measured 3-dB width of the HOM dip is 1.47 ps and shows good agreement with the measured single-photon spectral bandwidth.The experimental results lay a solid foundation for developing portable,miniaturized frequency entangled sources at telecommunication band for the further applications in quantum information areas,such as quantum time synchronization.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91336108,11273024,91636101,Y133ZK1101)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院前沿科学重点研究项目(批准号:QYZDB-SSWSLH007)、中国科学院科研装备研制项目和中组部"青年拔尖人才支持计划"项目(批准号:组厅字[2013]33号)资助的课题.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91336108, 11273024, 91636101, Y133ZK1101), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SSWSLH007), the Research Equipment Development Project of Chinese Academy of Sciences, and the "Young Top-notch Talents" Program of Organization Department of the CPC Central Committee, China (Grant No.[2013]33).
    [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55

    [2]

    Zeilinger A 1999 Rev. Mod. Phys. 71 S288

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [6]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [7]

    Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855

    [8]

    Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401

    [9]

    Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005

    [10]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [11]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [12]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [13]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [14]

    Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804

    [15]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [16]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [17]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [18]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [19]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [20]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [21]

    Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83

    [22]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773

    [23]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [24]

    Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149

    [25]

    Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153

    [26]

    Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155

    [27]

    Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027

    [28]

    Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727

    [29]

    Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905

    [30]

    Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802

    [31]

    McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156

    [32]

    Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769

    [33]

    Franson J D 1992 Phys. Rev. A 45 3126

    [34]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [35]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241

    [36]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902

    [37]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417

    [38]

    Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809

    [39]

    Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489

    [40]

    Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128

    [41]

    Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467

    [42]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [43]

    Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156

  • [1]

    Bouwmeester D, Ekert A, Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Berlin: Springer-Verlag) pp50-55

    [2]

    Zeilinger A 1999 Rev. Mod. Phys. 71 S288

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [5]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575

    [6]

    Kim Y H, Kulik S P, Shih Y H 2001 Phys. Rev. Lett. 86 1370

    [7]

    Squier J, Mller M 2001 Rev. Sci. Instrum. 72 2855

    [8]

    Brasselet S, Floc'h V L, Treussart F, Roch J F, Zyss J, Botzung-Appert E, Ibanez A 2003 Phys. Rev. Lett. 92 207401

    [9]

    Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005

    [10]

    Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2002 Phys. Rev. A 65 053817

    [11]

    Sergienko A V, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [12]

    Nasr M B, Saleh B E A, Sergienko A V, Teich M C 2003 Phys. Rev. Lett. 91 083601

    [13]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [14]

    Zerom P, Chan K W C, Howell J C, Boyd R W 2011 Phys. Rev. A 84 061804

    [15]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [16]

    Marek P, Fiurasek J 2010 Phys. Rev. A 82 014304

    [17]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [18]

    Erkmen B I, Shapiro J H 2009 Phys. Rev. A 79 023833

    [19]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594

    [20]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330

    [21]

    Boyd R W 1992 Nonlinear Optics (San Diego: Academic Press) pp74-83

    [22]

    Kwiat P G, Waks E, White A G, Appelbaum I, Eberhard P H 1999 Phys. Rev. A 60 R773

    [23]

    Fedrizzi A, Herbst T, Poppe A, Jennewein T, Zeilinger A 2007 Opt. Express 15 15377

    [24]

    Fiorentino M, Beausoleil R G 2008 Opt. Express 16 20149

    [25]

    Hentschel M, Hbel H, Poppe A, Zeilinger A 2009 Opt. Express 17 23153

    [26]

    Tanzilli S, Tittel W, de Riedmatten H, Zbinden H, Baldi P, de Micheli M P, Ostrowsky D B, Gisin N 2002 Eur. Phys. J. D 18 155

    [27]

    Halder M, Beveratos A, Thew R T, Jorel C, Zbinden H, Gisin N 2008 New J. Phys. 10 023027

    [28]

    Chen J, Fan J, Migdall A 2010 Proc. SPIE 17 6727

    [29]

    Lee K F, Chen J, Liang C, Li X, Voss P L, Kumar P 2006 Opt. Lett. 31 1905

    [30]

    Medic M, Altepeter J B, Hall M A, Patel M, Kumar P 2010 Opt. Lett. 35 802

    [31]

    McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G, Wadsworth W J 2009 Opt. Express 17 6156

    [32]

    Fujii G, Namekata N, Motoya M, Kurimura S, Inoue S 2007 Opt. Express 15 12769

    [33]

    Franson J D 1992 Phys. Rev. A 45 3126

    [34]

    Steinberg A M, Kwiat P G, Chiao R Y 1992 Phys. Rev. A 45 6659

    [35]

    Baek S Y, Cho Y W, Kim Y H 2009 Opt. Express 17 19241

    [36]

    Giovannetti V, Lloyd S, Maccone L, Wong F N C 2001 Phys. Rev. Lett. 87 117902

    [37]

    Giovannetti V, Lloyd S, Maccone L 2001 Nature 412 417

    [38]

    Fitch M J, Franson J D 2002 Phys. Rev. A 65 053809

    [39]

    Hou F Y, Dong R F, Quan R A, Zhang Y, Bai Y, Liu T, Zhang S G, Zhang T Y 2012 Adv. Space Res. 50 1489

    [40]

    Hou F Y, Xiao X, Quan R A, Wang M M, Zhai Y W, Wang S F, Liu T, Zhang S G, Zhang T Y, Dong R F 2016 Appl. Phys. B 122 128

    [41]

    Fedorov M V, Efremov M A, Volkov P A, Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S467

    [42]

    Hong C K, Ou Z Y, Mandel L 1987 Phys. Rev. Lett. 59 2044

    [43]

    Mori S, Söderholm J, Namekata N, Inoue S 2008 Optics Commun. 264 156

  • [1] 余桂芳, 李志浩, 肖天琦, 冯田峰, 周晓祺. 基于薄膜铌酸锂的模式色散相位匹配单光子源.  , 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [2] 赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏. 小型化锶光钟物理系统的研制.  , 2018, 67(5): 050601. doi: 10.7498/aps.67.20172584
    [3] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析.  , 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [4] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究.  , 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [5] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体.  , 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [6] 唐明春, 肖绍球, 邓天伟, 柏艳英, 官剑, 王秉中. 小型化电谐振人工特异材料研究.  , 2010, 59(7): 4715-4719. doi: 10.7498/aps.59.4715
    [7] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量.  , 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [8] 张耘. 周期性极化铌酸锂的微区拉曼及荧光研究.  , 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [9] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换.  , 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [10] 武明峰, 孟繁义, 傅佳辉, 吴 群, 吴 健. 新型小型化的平面左手介质微带线及其后向波特性验证.  , 2008, 57(2): 822-826. doi: 10.7498/aps.57.822
    [11] 张开春, 刘盛纲. 周期极化铌酸锂中光整流THz波辐射.  , 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [12] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究.  , 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
    [13] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计.  , 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [14] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析.  , 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [15] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究.  , 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [16] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析.  , 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [17] 阙文修, 姚熹. 锂离子外扩散对扩镁铌酸锂表层结晶特性的影响.  , 1996, 45(5): 811-816. doi: 10.7498/aps.45.811
    [18] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 鈰铕铌酸锂的双光束耦合异常温度特性与结构相变.  , 1994, 43(9): 1455-1459. doi: 10.7498/aps.43.1455
    [19] 麦振洪, 周堂. 铌酸锶钠锂单晶折射率及透光曲线的测量.  , 1981, 30(9): 1259-1263. doi: 10.7498/aps.30.1259
    [20] 超声研究室超声压电材料组. 片状铌酸锂单晶的生长及其特性.  , 1979, 28(6): 783-790. doi: 10.7498/aps.28.783
计量
  • 文章访问数:  6233
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-03-28
  • 刊出日期:  2019-07-20

/

返回文章
返回
Baidu
map