搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lorenz模型的集合预报与单一预报的比较研究

梁丁 顾斌 丁瑞强 李建平 钟权加

引用本文:
Citation:

基于Lorenz模型的集合预报与单一预报的比较研究

梁丁, 顾斌, 丁瑞强, 李建平, 钟权加

Comparative study of Lorenz model based ensemble forecasting and single forecasting

Liang Ding, Gu Bin, Ding Rui-Qiang, Li Jian-Ping, Zhong Quan-Jia
PDF
导出引用
  • 根据非线性局部Lyapunov向量方法和增长模繁殖方法,选取Lorenz63模型和Lorenz96模型的不同状态为例,对集合预报与单一预报的预报技巧开展了对比研究.结果表明:与单一预报比较,集合预报的均方根误差和型异常相关有明显改善,随预报时间推移,改善效果越显著,且集合平均优于单一预报的实验个例数逐渐增多.就概率分布(f)而言,单一预报状态的f与真实状态基本一致,不随时间变化;而集合平均预报状态的f则随时间呈现出值域变窄、峰值变大的特点.表明随预报时间的延长,单一预报状态为混沌吸引子上的随机状态,而集合平均预报状态为吸引子子集上的随机状态,这可能是集合平均误差小于单一预报的原因.
    In the past two decades,the ensemble forecasting has gained considerable attention.The atmosphere is a chaotic system,and a small error in the initial conditions will result in an enormous forecast uncertainty with time.It is impossible to precisely predict the future state of the atmosphere by a single (or control) forecasting.The ensemble forecasting is a feasible method to reduce the forecast uncertainty and to provide the reliability information about forecast.Many studies showed that because of the nonlinear filtering effect,the ensemble forecasting is more skillful than the single forecasting according to the statistical average over a large number of numerical experimental cases. However,the forecast skill can vary widely from day to day according to the specific synoptic events.The dependence of the ensemble forecasting on specific event has not been fully addressed in previous studies.Therefore,the performances of the ensemble forecasting in specific experimental cases should be further studied,which is important for improving the forecast skill in weather and climate events.In this paper,the nonlinear local Lyapunov vectors (NLLVs),which indicate orthogonal directions in phase space with different perturbation growth rates,are introduced to generate the initial perturbations for the ensemble forecasting.The NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more components in analysis errors than other ensemble methods.Meanwhile,the bred growing mode (BGM) method,which indicates the fastest growing perturbation mode,is also used for the ensemble forecasting. Based on the NLLV and BGM methods,the forecast performances of the ensemble forecasting and single forecasting are compared in the Lorenz63 and Lorenz96 models for specific experimental cases.Additionally,two practical measures, namely the root mean square error (RMSE) and pattern anomaly correlation (PAC),are used to assess the performances of the ensemble forecasting.The results indicate that each ensemble mean forecasting is more skillful than its single forecasting in terms of RMSE and PAC.For each experimental case,the proportion of the ensemble forecasting better than single forecasting gradually increases with time in Lorenz63(Lorenz96) model by both NLLV and BGM methods, respectively.In addition,the variation of probability distribution of the ensemble mean states might be the reason why the forecast error of ensemble forecasting is less than that of the single forecast.The results based on simple model could provide a new perspective to understand ensemble forecasting and may be conducive to the weather and climate prediction.
      通信作者: 丁瑞强, drq@mail.iap.ac.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号:41522502)、国家科技支撑计划(批准号:2015BAC03B00)和全球变化与海气相互作用专项(批准号:GASI-IPOVAI-06)资助的课题.
      Corresponding author: Ding Rui-Qiang, drq@mail.iap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B00), and the National Programe on Global Change and Air-Sea Interaction, China (Grant No. GASI-IPOVAI-06).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chou J F 1990 New Advances of Atmospheric Dynamic (Lanzhou: Lanzhou University Press) p214 (in Chinese) [丑纪范 1990 大气动力学的新进展(兰州: 兰州大学出版社) 第214页]

    [3]

    Li J P, Chou J 1996 Chin. Sci. Bull. 41 587

    [4]

    Epstein E S 1969 Tellus 21 739

    [5]

    Leith C E 1974 Mon. Wea. Rev. 102 409

    [6]

    Fritsch J M, Hilliker J, Ross J 2000 Wea. Forecasting 15 571

    [7]

    Visloscky R L, Fritsch J M 1995 Bull. Amer. Meteor. Soc. 76 1157

    [8]

    Hoffman R N, Kalnay E 1983 Tellus 35A 100

    [9]

    Toth Z, Kalnay E 1993 Bull. Amer. Meteor. Soc. 74 2317

    [10]

    Toth Z, Kalnay E 1997 Mon. Wea. Rev. 125 3297

    [11]

    Molteni F, Palmer T N 1993 Q. J. R. Meteorol. Soc. 119 269

    [12]

    Molteni F, Buizza R, Palmer T N, Petroliagis T 1996 Q. J. R. Meteorol. Soc. 122 73

    [13]

    Buizza R 1996 Mon. Wea. Rev. 125 99

    [14]

    Houtekamer P L, Lefaivre L, Derome J, Ritchie H, Mitchell H L 1996 Mon. Wea. Rev. 124 1225

    [15]

    Houtekamer P L, Mitchell H L 1998 Mon. Wea. Rev. 126 796

    [16]

    Mu M, Jiang Z N 2008 Chin. Sci. Bull. 53 2062

    [17]

    Duan W S, Mu M 2009 Sci. China Ser. D: Earth Sci. 52 883

    [18]

    Evensen G 2003 Ocean Dyn. 53 343

    [19]

    Wang X, and Bishop C 2003 J. Atmos. Sci. 60 1140

    [20]

    Feng J, Ding R Q, Liu D Q, Li J P 2014 J. Atmos. Sci. 71 3554

    [21]

    Feng J, Ding R Q, Li J P, Liu D Q 2016 Adv. Atmos. Sci. 33 1036

    [22]

    Ding R Q, Li J P, Li B S 2017 Adv. Atmos. Sci. 34 1027

    [23]

    Anderson J L 1997 Mon. Wea. Rev. 125 2969

    [24]

    Feng G L, Dong W J 2003 Acta Phys. Sin. 52 2347 (in Chinese) [封国林, 董文杰 2003 52 2347]

    [25]

    Bowler N E 2006 Tellus 58A 538

    [26]

    Li Z C, Chen D H 2002 J. Appl. Meteor. Sci. 13 1 (in Chinese) [李泽椿, 陈德辉 2002 应用气象学报 13 1]

    [27]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 55 969]

    [28]

    Ma J H, Zhu Y J, Wang P X, Duan M J 2011 Trans. Atmos. Sci. 34 370 (in Chinese) [麻巨慧, 朱跃建, 王盘兴, 段明铿 2011 大气科学学报 34 370]

    [29]

    Tan N, Chen J, Tian H 2013 Meteor. Mon. 39 543 (in Chinese) [谭宁, 陈静, 田华 2013 气象 39 543]

    [30]

    Zheng Z H, Feng G L, Huang J P, Chou J F 2012 Acta Phys. Sin. 61 199203 (in Chinese) [郑志海, 封国林, 黄建平, 丑纪范 2012 61 199203]

    [31]

    Zhang H B, Chen J, Zhi X F, Long K J, Wang Y N 2014 Trans. Atmos. Sci. 37 276 (in Chinese) [张涵斌, 陈静, 智协飞, 龙柯吉, 王亚男 2014 大气科学学报 37 276]

    [32]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 241 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 241]

    [33]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 343 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 343]

    [34]

    Ding R Q, Li J P, Ha K J 2008 J. Geophys. Res. 113 D24112

    [35]

    Li J P, Ding R Q 2011 Mon. Wea. Rev. 139 3265

    [36]

    Lorenz E N, Emanuel K A 1998 J. Atmos. Sci. 55 399

    [37]

    Lorenz E N 1995 Seminar on Predictability Shinfield Park, Reading, United Kingdom, September 4-8, 1995 p1

    [38]

    Buizza R, Houtekamer P L, Toth Z, Pellerin G, Wei M, Zhu Y 2005 Mon. Wea. Rev. 133 1076

    [39]

    Houtekamer P L, Derome J 1994 Mon. Wea. Rev. 122 2179

    [40]

    Zhuang Z R, Xue J S, Li X L 2011 Acta Meteor. Sin. 69 620 (in Chinese) [庄照荣, 薛纪善, 李兴良 2011 气象学报 69 620]

    [41]

    Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Chou J F 1990 New Advances of Atmospheric Dynamic (Lanzhou: Lanzhou University Press) p214 (in Chinese) [丑纪范 1990 大气动力学的新进展(兰州: 兰州大学出版社) 第214页]

    [3]

    Li J P, Chou J 1996 Chin. Sci. Bull. 41 587

    [4]

    Epstein E S 1969 Tellus 21 739

    [5]

    Leith C E 1974 Mon. Wea. Rev. 102 409

    [6]

    Fritsch J M, Hilliker J, Ross J 2000 Wea. Forecasting 15 571

    [7]

    Visloscky R L, Fritsch J M 1995 Bull. Amer. Meteor. Soc. 76 1157

    [8]

    Hoffman R N, Kalnay E 1983 Tellus 35A 100

    [9]

    Toth Z, Kalnay E 1993 Bull. Amer. Meteor. Soc. 74 2317

    [10]

    Toth Z, Kalnay E 1997 Mon. Wea. Rev. 125 3297

    [11]

    Molteni F, Palmer T N 1993 Q. J. R. Meteorol. Soc. 119 269

    [12]

    Molteni F, Buizza R, Palmer T N, Petroliagis T 1996 Q. J. R. Meteorol. Soc. 122 73

    [13]

    Buizza R 1996 Mon. Wea. Rev. 125 99

    [14]

    Houtekamer P L, Lefaivre L, Derome J, Ritchie H, Mitchell H L 1996 Mon. Wea. Rev. 124 1225

    [15]

    Houtekamer P L, Mitchell H L 1998 Mon. Wea. Rev. 126 796

    [16]

    Mu M, Jiang Z N 2008 Chin. Sci. Bull. 53 2062

    [17]

    Duan W S, Mu M 2009 Sci. China Ser. D: Earth Sci. 52 883

    [18]

    Evensen G 2003 Ocean Dyn. 53 343

    [19]

    Wang X, and Bishop C 2003 J. Atmos. Sci. 60 1140

    [20]

    Feng J, Ding R Q, Liu D Q, Li J P 2014 J. Atmos. Sci. 71 3554

    [21]

    Feng J, Ding R Q, Li J P, Liu D Q 2016 Adv. Atmos. Sci. 33 1036

    [22]

    Ding R Q, Li J P, Li B S 2017 Adv. Atmos. Sci. 34 1027

    [23]

    Anderson J L 1997 Mon. Wea. Rev. 125 2969

    [24]

    Feng G L, Dong W J 2003 Acta Phys. Sin. 52 2347 (in Chinese) [封国林, 董文杰 2003 52 2347]

    [25]

    Bowler N E 2006 Tellus 58A 538

    [26]

    Li Z C, Chen D H 2002 J. Appl. Meteor. Sci. 13 1 (in Chinese) [李泽椿, 陈德辉 2002 应用气象学报 13 1]

    [27]

    He W P, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 55 969]

    [28]

    Ma J H, Zhu Y J, Wang P X, Duan M J 2011 Trans. Atmos. Sci. 34 370 (in Chinese) [麻巨慧, 朱跃建, 王盘兴, 段明铿 2011 大气科学学报 34 370]

    [29]

    Tan N, Chen J, Tian H 2013 Meteor. Mon. 39 543 (in Chinese) [谭宁, 陈静, 田华 2013 气象 39 543]

    [30]

    Zheng Z H, Feng G L, Huang J P, Chou J F 2012 Acta Phys. Sin. 61 199203 (in Chinese) [郑志海, 封国林, 黄建平, 丑纪范 2012 61 199203]

    [31]

    Zhang H B, Chen J, Zhi X F, Long K J, Wang Y N 2014 Trans. Atmos. Sci. 37 276 (in Chinese) [张涵斌, 陈静, 智协飞, 龙柯吉, 王亚男 2014 大气科学学报 37 276]

    [32]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 241 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 241]

    [33]

    Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 343 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 343]

    [34]

    Ding R Q, Li J P, Ha K J 2008 J. Geophys. Res. 113 D24112

    [35]

    Li J P, Ding R Q 2011 Mon. Wea. Rev. 139 3265

    [36]

    Lorenz E N, Emanuel K A 1998 J. Atmos. Sci. 55 399

    [37]

    Lorenz E N 1995 Seminar on Predictability Shinfield Park, Reading, United Kingdom, September 4-8, 1995 p1

    [38]

    Buizza R, Houtekamer P L, Toth Z, Pellerin G, Wei M, Zhu Y 2005 Mon. Wea. Rev. 133 1076

    [39]

    Houtekamer P L, Derome J 1994 Mon. Wea. Rev. 122 2179

    [40]

    Zhuang Z R, Xue J S, Li X L 2011 Acta Meteor. Sin. 69 620 (in Chinese) [庄照荣, 薛纪善, 李兴良 2011 气象学报 69 620]

    [41]

    Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617

  • [1] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正.  , 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [2] 李保生, 丁瑞强, 李建平, 钟权加. 强迫Lorenz系统的可预报性研究.  , 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [3] 杨秋明. 2013年长江下游降水低频分量延伸期预报的扩展复数自回归模型.  , 2014, 63(19): 199202. doi: 10.7498/aps.63.199202
    [4] 达朝究, 穆帅, 马德山, 于海鹏, 侯威, 龚志强. 基于Lorenz系统的数值天气转折期预报理论探索.  , 2014, 63(2): 029201. doi: 10.7498/aps.63.029201
    [5] 洪梅, 张韧, 刘科峰. 基于遗传优化的西太平洋副高异常活动年份的动力预报模型反演.  , 2013, 62(7): 070505. doi: 10.7498/aps.62.070505
    [6] 黎爱兵, 张立凤. 基于Lorenz映射的混沌系统分支变换预报规律研究.  , 2013, 62(12): 120507. doi: 10.7498/aps.62.120507
    [7] 熊开国, 赵俊虎, 封国林, 黄建平, 胡经国. 汛期降水相似动力预报模式误差主分量相似预报方法.  , 2012, 61(14): 149204. doi: 10.7498/aps.61.149204
    [8] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究.  , 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [9] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响.  , 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [10] 郑志海, 封国林, 黄建平, 丑纪范. 基于延伸期可预报性的集合预报方法和数值试验.  , 2012, 61(19): 199203. doi: 10.7498/aps.61.199203
    [11] 张永明, 齐维贵. 供热负荷时间序列混沌特性分析及预报模型研究.  , 2011, 60(10): 100508. doi: 10.7498/aps.60.100508
    [12] 惠娟, 王自娟, 惠俊英, 何文翔. 双基地混响平均强度理论及仿真预报.  , 2009, 58(8): 5491-5500. doi: 10.7498/aps.58.5491
    [13] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [14] 王 晶, 冯学尚. 日冕物质抛射引起地磁扰动的分类预报.  , 2007, 56(4): 2466-2474. doi: 10.7498/aps.56.2466
    [15] 何文平, 封国林, 董文杰, 李建平. Lorenz系统的可预报性.  , 2006, 55(2): 969-977. doi: 10.7498/aps.55.969
    [16] 侯 威, 封国林, 董文杰. 基于复杂度分析logistic映射和Lorenz模型的研究.  , 2005, 54(8): 3940-3946. doi: 10.7498/aps.54.3940
    [17] 郜传厚, 周志敏. 高炉铁水Si含量的修正混沌加权一阶局部预报.  , 2004, 53(12): 4092-4097. doi: 10.7498/aps.53.4092
    [18] 封国林, 董文杰. 集合预报物理基础的探讨.  , 2003, 52(9): 2347-2353. doi: 10.7498/aps.52.2347
    [19] 封国林, 戴新刚, 王爱慧, 丑纪范. 混沌系统中可预报性的研究.  , 2001, 50(4): 606-611. doi: 10.7498/aps.50.606
    [20] 张铁铮. 磁暴二倍法预报地震的探索.  , 1976, 25(5): 455-459. doi: 10.7498/aps.25.455
计量
  • 文章访问数:  6539
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-27
  • 修回日期:  2018-01-17
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map