-
张应变GaAs1-xPx量子阱是高性能大功率半导体激光器的核心有源区,基于能带结构分析优化其结构参数具有重要的应用指导意义.首先,基于6×6 Luttinger-Kohn模型,采用有限差分法计算了张应变GaAs1-xPx量子阱的能带结构,得到了第一子带间跃迁波长固定为近800 nm时的阱宽-阱组分关系,即随着阱组分x的增加,需同时增大阱宽,且阱宽较大时靠近价带顶的是轻空穴第一子带lh1,阱宽较小时靠近价带顶的是重空穴第一子带hh1.计算并分析了导带第一子带c1到价带子带lh1和hh1的跃迁动量矩阵元.针对808 nm量子阱激光器,模拟计算了阈值增益与阱宽的关系,得到大阱宽有利于横磁模激射,小阱宽有利于横电模激射.进一步考虑了自发辐射和俄歇复合之后,模拟计算了808 nm量子阱激光器的阱宽与阈值电流密度的关系,阱宽较大时载流子对高能级子带的填充使得阈值电流密度增加,而阱宽较小时则是低的有源区光限制因子导致阈值电流密度升高,因此存在一最佳的阱宽-阱组分组合,可使阈值电流密度达到最小.本文的模拟结果可对张应变GaAs1-xPx量子阱激光器的理论分析和结构设计提供理论指导.As an active region, the tensile strain GaAs1-xPx quantum well plays an important role in the high power semiconductor laser diode with a wavelength of about 800 nm. Accompanied with the improved stability due to the Al-free active region, the GaAs1-xPx quantum well laser also shows a high level of catastrophic optical mirror damage because of the non-absorbing window at the facet, which is formed automatically by the relaxation of the tensile strain GaAs1-xPx material. On the other side, the GaAs1-xPx quantum well laser can provide a transverse magnetic (TM) polarized light source which is important for many solid state laser systems. However, the energy band structure of the tensile strain GaAs1-xPx quantum well is more complicated than that of the compressed or lattice matched quantum well. Although the light hole band is on the top of the heavy hole band for the bulk tensile strain GaAs1-xPx material, the situation may be different from the tensile strain GaAs1-xPx quantum well, in which the first light hole subband lh1 can be either on the top of the first heavy hole subband hh1 or reversed, that will cause the laser to generate either TM or transverse electric (TE) polarized light according to the well structure. So it is meaningful to optimize the tensile strain GaAs1-xPx quantum well structure based on the analysis of the energy band structure. Firstly, according to the 6×6 Luttinger-Kohn theory, the energy band structure of the tensile strain GaAs1-xPx quantum well is calculated by the finite difference method. The relationship between the interband transition energy and the well structure parameters is established. It is found that the well composition x and the well width should increase simultaneously, in order to fix the first subband transition wavelength at about 800 nm. Special attention is paid to the 808 nm quantum well, the valence structures of different well widths are calculated, the detailed analysis of the envelope function shows that the top valence subband is lh1 for wider well width, while it is changed to hh1 for narrower well width. Meanwhile, both the TE and the TM momentum matrix element are calculated as a function of the transverse wave vector for the subband transition from c1 to lh1, lh2, hh1 and hh2, respectively. Further, the threshold optical gains of different well widths are simulated for 808 nm laser diode with the tensile strain GaAs1-xPx quantum well as an active region, the wider well width benefits the TM mode, while the narrower one is favor of TE mode. Finally, according to the threshold carrier density, the relationship between the threshold current density and the well width is analyzed for 808 nm laser diode by considering both the spontaneous and the Auger recombination, an optimum combination of the well width and the well composition exists. For wider well width, the threshold current density will be higher because of the high energy subband carrier filling effect. For narrower well width, the decrease of the optical confinement factor will lead to the increase of threshold current density.
-
Keywords:
- quantum well /
- energy band structure /
- tensile strain
[1] Ronen D, Yuri B, Shalom C, Genady K, Moshe L, Yaki O, Ophir P, Dan Y, Yoram K 2011 Proc. SPIE 8039 80390E
[2] Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1]
[3] Jiang X M, Zhong H Q, Yang H, Zhou Y, Liu Z M, Zhao C H, Yan J S, Ye B G, Su C K, Wu X L, Hou Y Q, Jiang W L, Liu J X, Wang Z, Lin J, Long J, Guo Z Y 2017 Infra. Laser Eng. 46 0206001 (in Chinese) [姜雪梅, 钟会清, 杨辉, 周艳, 刘智明, 赵仓焕, 晏锦胜, 叶丙刚, 苏成康, 吴秀丽, 侯雨晴, 姜万玲, 刘键雄, 王振, 林锦, 龙佳, 郭周义 2017 红外与激光工程 46 0206001]
[4] Degtyareva N S, Kondakov S A, Mikayelyan G T, Gorlachuk P V, Ladugin M A, Marmalyuk A A, Ryaboshtan Y L, Yarotskaya I V 2013 Quantum Electron. 43 509
[5] Fan Z W, Qiu J S, Tang X X, Bai Z A, Kang Z J, Ge W Q, Wang H C, Liu H, Liu Y L 2017 Acta Phys. Sin. 66 054205 (in Chinese) [樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮 2017 66 054205]
[6] Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194208 (in Chinese) [刘江, 刘晨, 师红星, 王璞 2016 65 194208]
[7] Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209 (in Chinese) [刘江, 刘晨, 师红星, 王璞 2016 65 194209]
[8] Wang X F, Zhang J H, Gao Z Y, Xia G Q, Wu Z M 2017 Acta Phys. Sin. 66 114209 (in Chinese) [王小发, 张俊红, 高子叶, 夏光琼, 吴正茂 2017 66 114209]
[9] Petroff P, Hartman R L 1973 Appl. Phys. Lett. 23 469
[10] Li J J, Han J, Deng J, Zou D S, Shen G D 2006 Chin. J. Laser 33 1159 (in Chinese) [李建军, 韩军, 邓军, 邹德恕, 沈光地 2006 中国激光 33 1159]
[11] Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]
[12] Botez D 1999 Proc. SPIE 3628 1
[13] Klehr A, Wnsche H J, Liero A, Prziwarka T, Erbert G, Wenzel H, Knigge A 2017 Semicond. Sci. Technol. 32 045016
[14] Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Tränkle G 2008 IEEE Photon. Technol. Lett. 20 1378
[15] Paschke K, Einfeldt S, Fiebig C, Ginolas A, Häusler K, Ressel P, Sumpf B, Erbert G 2007 Proc. SPIE 6456 64560H
[16] Li P X, Jiang K, Zhang X, Tang Q M, Xia W, Li S Q, Ren Z X, Xu X G 2013 Proc. SPIE 8605 860510
[17] Wang Y, Yang Y, Qin L, Wang C, Yao D, Liu Y, Wang L J 2008 Proc. SPIE 7135 71350N
[18] Häusler K, Sumpf B, Erbert G, Tränkle G 2007 Conference on Lasers and Electro-Optics-Pacific Rim Seoul, Republic of Korea, August 26-31, 2007 p10020732
[19] Wenzel H, Erbert G, Bugge F, Knauer A, Maege J, Sebastian J, Staske R, Vogel K, Tränkle G 2000 Proc. SPIE 3947 32
[20] Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218
[21] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[22] Chuang S L 1991 Phys. Rev. B 43 9649
[23] Chris G, van de Walle 1989 Phys. Rev. B 39 1871
[24] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118
-
[1] Ronen D, Yuri B, Shalom C, Genady K, Moshe L, Yaki O, Ophir P, Dan Y, Yoram K 2011 Proc. SPIE 8039 80390E
[2] Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1]
[3] Jiang X M, Zhong H Q, Yang H, Zhou Y, Liu Z M, Zhao C H, Yan J S, Ye B G, Su C K, Wu X L, Hou Y Q, Jiang W L, Liu J X, Wang Z, Lin J, Long J, Guo Z Y 2017 Infra. Laser Eng. 46 0206001 (in Chinese) [姜雪梅, 钟会清, 杨辉, 周艳, 刘智明, 赵仓焕, 晏锦胜, 叶丙刚, 苏成康, 吴秀丽, 侯雨晴, 姜万玲, 刘键雄, 王振, 林锦, 龙佳, 郭周义 2017 红外与激光工程 46 0206001]
[4] Degtyareva N S, Kondakov S A, Mikayelyan G T, Gorlachuk P V, Ladugin M A, Marmalyuk A A, Ryaboshtan Y L, Yarotskaya I V 2013 Quantum Electron. 43 509
[5] Fan Z W, Qiu J S, Tang X X, Bai Z A, Kang Z J, Ge W Q, Wang H C, Liu H, Liu Y L 2017 Acta Phys. Sin. 66 054205 (in Chinese) [樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮 2017 66 054205]
[6] Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194208 (in Chinese) [刘江, 刘晨, 师红星, 王璞 2016 65 194208]
[7] Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209 (in Chinese) [刘江, 刘晨, 师红星, 王璞 2016 65 194209]
[8] Wang X F, Zhang J H, Gao Z Y, Xia G Q, Wu Z M 2017 Acta Phys. Sin. 66 114209 (in Chinese) [王小发, 张俊红, 高子叶, 夏光琼, 吴正茂 2017 66 114209]
[9] Petroff P, Hartman R L 1973 Appl. Phys. Lett. 23 469
[10] Li J J, Han J, Deng J, Zou D S, Shen G D 2006 Chin. J. Laser 33 1159 (in Chinese) [李建军, 韩军, 邓军, 邹德恕, 沈光地 2006 中国激光 33 1159]
[11] Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞福, 杨国文, 吴建耀, 宋克昌, 李秀山, 宋云菲 2016 65 164203]
[12] Botez D 1999 Proc. SPIE 3628 1
[13] Klehr A, Wnsche H J, Liero A, Prziwarka T, Erbert G, Wenzel H, Knigge A 2017 Semicond. Sci. Technol. 32 045016
[14] Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Tränkle G 2008 IEEE Photon. Technol. Lett. 20 1378
[15] Paschke K, Einfeldt S, Fiebig C, Ginolas A, Häusler K, Ressel P, Sumpf B, Erbert G 2007 Proc. SPIE 6456 64560H
[16] Li P X, Jiang K, Zhang X, Tang Q M, Xia W, Li S Q, Ren Z X, Xu X G 2013 Proc. SPIE 8605 860510
[17] Wang Y, Yang Y, Qin L, Wang C, Yao D, Liu Y, Wang L J 2008 Proc. SPIE 7135 71350N
[18] Häusler K, Sumpf B, Erbert G, Tränkle G 2007 Conference on Lasers and Electro-Optics-Pacific Rim Seoul, Republic of Korea, August 26-31, 2007 p10020732
[19] Wenzel H, Erbert G, Bugge F, Knauer A, Maege J, Sebastian J, Staske R, Vogel K, Tränkle G 2000 Proc. SPIE 3947 32
[20] Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218
[21] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[22] Chuang S L 1991 Phys. Rev. B 43 9649
[23] Chris G, van de Walle 1989 Phys. Rev. B 39 1871
[24] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118
计量
- 文章访问数: 7437
- PDF下载量: 171
- 被引次数: 0