-
利用基于宽场显微光学系统的单分子散焦成像技术测量了不同构象poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole](PFO-DBT)共轭聚合物单分子的光物理与动力学特性.通过分析共轭聚合物单分子的荧光轨迹和对应的发射偶极取向变化识别共轭聚合物单分子发光单元,发现延伸构象下的单分子呈现多发色团发光特性,而折叠构象下的单分子保持高效链间能量转移,呈现单个发色团发光特性.共轭聚合物单分子构象对能量转移效率的影响可用于研究基于共轭聚合物的光电器件和分子器件.Study of the relationship between conformation and photophysics of individual -conjugated polymer chain is one of the most important problems in polymer nanoscience and nanotechnology, which will facilitate the application of conjugated polymer in a range of electronic devices such as organic field-effect transistors, light-emitting diodes, and solar cells. Single-molecule spectroscopy has emerged as a powerful tool to unravel structure and dynamic heterogeneities that are hidden in ensemble average. Identification of the emitting segments through fluorescence of single conjugated polymer molecules and their dependence on the conformation can help reveal the mechanism and the extent of energy transfer process in a single polymer chain. In this paper, the photophysical properties of individual poly[2, 7-(9, 9-dioctylfluorene)-alt-4, 7-bis(thiophen-2-yl) benzo-2, 1, 3-thiadiazole] (PFO-DBT) conjugated polymer molecules are measured based on the defocused wide-field microscopy of single molecules. The single PFO-DBT molecules are prepared on cleaned glass coverslips by spin-coating solution of poly[methyl methacrylate] (PMMA) containing 110-9 mol/L PFO-DBT molecules in chloroform and toluene, respectively. Defocused imaging of single conjugated polymer molecule is performed based on a wide-field fluorescence microscope system. The change of defocused patterns of individual polymer chain maps the angular distribution of emitted chromophore and thus the emitting dipole orientation. Fluorescence trajectory and corresponding emission dipole moments of single conjugated polymer molecules are analyzed to identify the emitting conjugated segments. It is found that single PFO-DBT conjugated polymer molecules prepared by chloroform solvent show extended conformation. The intrachain energy transfer is dominant in the single conjugated polymer molecules that take extended conformation, which leads to photophysical properties of multiple chromophores. In contrast, single PFO-DBT conjugated polymer molecules prepared by toluene solvent hold folded conformation, which exhibit emission from single chromophore due to efficient interchain energy transfer. The emitting chromophore is not constant in a single PFO-DBT conjugated polymer molecule with folded conformation. About 35% of the single conjugated molecules prepared with toluene show only one constant emitting chromophore before photobleaching. However, about 65% of single conjugated polymer molecules prepared with toluene show two or more sequencely emitting chromophores. It can be concluded that the energy transfer properties of single PFO-DBT conjugated polymer molecule is greatly dependent on the conformation, which can be reflected in its photophysical properties. The study on the influence of single conjugated polymer conformation on energy transfer efficiency can provide the reference for the preparation and performance of optoelectronic devices and molecular devices based on conjugated polymer.
-
Keywords:
- conjugated polymer /
- energy transfer /
- conformation /
- defocused imaging
[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539
[2] Liu C W, Zhou X, Yue W J, Wang M T, Qiu Z L, Meng W L, Chen J W, Qi J J, Dong C 2015 Acta Phys. Sin. 64 038804 (in Chinese) [刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超 2015 64 038804]
[3] Nikolka M, Nasrallah I, Rose B, Ravva M K, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A, Illig S, Too P, Jongman J, McCulloch I, Bredas J L, Sirringhaus H 2017 Nat. Mater. 16 356
[4] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lssem B, Leo K 2009 Nature 459 234
[5] Senanayak S P, Yang B Y, Thomas T H, Giesbrecht N, Huang W C, Gann E, Nair B, Goedel K, Guha S, Moya X, McNeill C R, Docampo P, Sadhanala A, Friend R H, Sirringhaus H 2017 Sci. Adv. 3 e1601935
[6] Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734
[7] Vacha M, Habuchi S 2010 NPG Asia Mater. 2 134
[8] Tretiak S, Saxena A, Martin R L, Bishop A R 2002 Phys. Rev. Lett. 89 097402
[9] Ebihara Y, Habuchi S, Vacha M 2009 Chem. Lett. 38 1094
[10] Niu Q L, Zhang Y, Fan G H 2009 Acta Phys. Sin. 58 8630 (in Chinese) [牛巧利, 章勇, 范广涵 2009 58 8630]
[11] Wang D D, Wu Z X, Lei X L, Zhang W W, Jiao B, Wang D W, Hou X 2013 Phys. Stat. Sol. 210 2556
[12] Collini E, Scholes G D 2009 Science 323 369
[13] Huser T, Yan M, Rothberg L J 2000 Proc. Natl. Acad. Sci. USA 97 11187
[14] Nguyen T Q, Martini I B, Liu J, Schwartz B J 2000 J. Phys. Chem. B 104 237
[15] Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Laser Optoelectr. Prog. 53 020003 (in Chinese) [陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 020003]
[16] Chen R Y, Wu R X, Zhang G F, Gao Y, Xiao L T, Jia S T 2014 Sensors 14 2449
[17] Moerner W E, Kador L 1989 Phys. Rev. Lett. 62 2535
[18] Orrit M, Bernard J 1990 Phys. Rev. Lett. 65 2716
[19] Kulzer F, Orrit M 2004 Annu. Rev. Phys. Chem. 55 585
[20] Moerner W E, Fromm D P 2003 Rev. Sci. Instrum. 74 3597
[21] Schroeyers W, Vallée R, Patra D, Hofkens J, Habuchi S, Vosch T, Cotlet M, Mllen K, Enderlein J, de Schryver F C 2004 J. Am. Chem. Soc. 126 14310
[22] Han B P, Zheng Y J 2008 Phys. Rev. A 78 015402
[23] Barbara P F, Gesquiere A J, Park S J, Lee Y J 2005 Acc. Chem. Res. 38 602
[24] Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]
[25] Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511
[26] Böhmer M, Enderlein J 2003 J. Opt. Soc. Am. B 20 554
[27] Habuchi S, Oba T, Vacha M 2011 Phys. Chem. Chem. Phys. 13 7001
[28] Yu J, Hu D H, Barbara P F 2000 Science 289 1327
[29] Lee Y J, Kim D Y, Grey J K, Barbara P F 2005 ChemPhysChem 6 2404
[30] Richards B, Wolf E 1959 Electromagnetic Diffraction in Optical Systems. Ⅱ. Structure of the Image Field in an Aplanatic System (London: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences) pp358-379
[31] Nguyen T Q, Doan V, Schwartz B J 1999 J. Chem. Phys. 110 4068
[32] Hu D H, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P F 2000 Nature 405 1033
[33] Scholes G D, Rumbles G 2006 Nat. Mater. 5 683
[34] Schwartz B J 2003 Annu. Rev. Phys. Chem. 54 141
[35] Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H, Scholes G D, Setayesh S, Mllen K, Brédas J L 2002 Proc. Natl. Acad. Sci. USA 99 10982
[36] Dedecker P, Muls B, Deres A, Uji-i H, Hotta J i, Sliwa M, Soumillion J P, Mllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079
[37] Diehl F P, Roos C, Duymaz A, Lunkenheimer B, Köhn A, Basché T 2014 J. Phys. Chem. Lett. 5 262
[38] Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M 1994 Phys. Rev. Lett. 73 744
-
[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B 1990 Nature 347 539
[2] Liu C W, Zhou X, Yue W J, Wang M T, Qiu Z L, Meng W L, Chen J W, Qi J J, Dong C 2015 Acta Phys. Sin. 64 038804 (in Chinese) [刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超 2015 64 038804]
[3] Nikolka M, Nasrallah I, Rose B, Ravva M K, Broch K, Sadhanala A, Harkin D, Charmet J, Hurhangee M, Brown A, Illig S, Too P, Jongman J, McCulloch I, Bredas J L, Sirringhaus H 2017 Nat. Mater. 16 356
[4] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lssem B, Leo K 2009 Nature 459 234
[5] Senanayak S P, Yang B Y, Thomas T H, Giesbrecht N, Huang W C, Gann E, Nair B, Goedel K, Guha S, Moya X, McNeill C R, Docampo P, Sadhanala A, Friend R H, Sirringhaus H 2017 Sci. Adv. 3 e1601935
[6] Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H 2016 Adv. Mater. 28 4734
[7] Vacha M, Habuchi S 2010 NPG Asia Mater. 2 134
[8] Tretiak S, Saxena A, Martin R L, Bishop A R 2002 Phys. Rev. Lett. 89 097402
[9] Ebihara Y, Habuchi S, Vacha M 2009 Chem. Lett. 38 1094
[10] Niu Q L, Zhang Y, Fan G H 2009 Acta Phys. Sin. 58 8630 (in Chinese) [牛巧利, 章勇, 范广涵 2009 58 8630]
[11] Wang D D, Wu Z X, Lei X L, Zhang W W, Jiao B, Wang D W, Hou X 2013 Phys. Stat. Sol. 210 2556
[12] Collini E, Scholes G D 2009 Science 323 369
[13] Huser T, Yan M, Rothberg L J 2000 Proc. Natl. Acad. Sci. USA 97 11187
[14] Nguyen T Q, Martini I B, Liu J, Schwartz B J 2000 J. Phys. Chem. B 104 237
[15] Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Laser Optoelectr. Prog. 53 020003 (in Chinese) [陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 020003]
[16] Chen R Y, Wu R X, Zhang G F, Gao Y, Xiao L T, Jia S T 2014 Sensors 14 2449
[17] Moerner W E, Kador L 1989 Phys. Rev. Lett. 62 2535
[18] Orrit M, Bernard J 1990 Phys. Rev. Lett. 65 2716
[19] Kulzer F, Orrit M 2004 Annu. Rev. Phys. Chem. 55 585
[20] Moerner W E, Fromm D P 2003 Rev. Sci. Instrum. 74 3597
[21] Schroeyers W, Vallée R, Patra D, Hofkens J, Habuchi S, Vosch T, Cotlet M, Mllen K, Enderlein J, de Schryver F C 2004 J. Am. Chem. Soc. 126 14310
[22] Han B P, Zheng Y J 2008 Phys. Rev. A 78 015402
[23] Barbara P F, Gesquiere A J, Park S J, Lee Y J 2005 Acc. Chem. Res. 38 602
[24] Li B, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 218201 (in Chinese) [李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 65 218201]
[25] Uji-i H, Melnikov S M, Deres A, Bergamini G, de Schryver F, Herrmann A, Mllen K, Enderlein J, Hofkens J 2006 Polymer 47 2511
[26] Böhmer M, Enderlein J 2003 J. Opt. Soc. Am. B 20 554
[27] Habuchi S, Oba T, Vacha M 2011 Phys. Chem. Chem. Phys. 13 7001
[28] Yu J, Hu D H, Barbara P F 2000 Science 289 1327
[29] Lee Y J, Kim D Y, Grey J K, Barbara P F 2005 ChemPhysChem 6 2404
[30] Richards B, Wolf E 1959 Electromagnetic Diffraction in Optical Systems. Ⅱ. Structure of the Image Field in an Aplanatic System (London: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences) pp358-379
[31] Nguyen T Q, Doan V, Schwartz B J 1999 J. Chem. Phys. 110 4068
[32] Hu D H, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P F 2000 Nature 405 1033
[33] Scholes G D, Rumbles G 2006 Nat. Mater. 5 683
[34] Schwartz B J 2003 Annu. Rev. Phys. Chem. 54 141
[35] Beljonne D, Pourtois G, Silva C, Hennebicq E, Herz L M, Friend R H, Scholes G D, Setayesh S, Mllen K, Brédas J L 2002 Proc. Natl. Acad. Sci. USA 99 10982
[36] Dedecker P, Muls B, Deres A, Uji-i H, Hotta J i, Sliwa M, Soumillion J P, Mllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079
[37] Diehl F P, Roos C, Duymaz A, Lunkenheimer B, Köhn A, Basché T 2014 J. Phys. Chem. Lett. 5 262
[38] Yan M, Rothberg L J, Papadimitrakopoulos F, Galvin M E, Miller T M 1994 Phys. Rev. Lett. 73 744
计量
- 文章访问数: 6441
- PDF下载量: 192
- 被引次数: 0