搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯在Al2O3(0001)表面生长的模拟研究

李锦锦 李多生 洪跃 邹伟 何俊杰

引用本文:
Citation:

石墨烯在Al2O3(0001)表面生长的模拟研究

李锦锦, 李多生, 洪跃, 邹伟, 何俊杰

Growth of graphene on Al2O3 (0001) surface

Li Jin-Jin, Li Duo-Sheng, Hong Yue, Zou Wei, He Jun-Jie
PDF
导出引用
  • 基于密度泛函理论的广义梯度近似法,对用化学气相沉积法在蓝宝石(-Al2O3)(0001)表面上生长石墨烯进行理论研究.研究结果表明:CH4在-Al2O3(0001)表面上的分解是吸热过程,由CH4完全分解出C需要较高能量及反应能垒,这些因素不利于C在衬底表面的存在.在-Al2O3(0001)表面,石墨烯形核的活跃因子并不是通常认为的C原子,而是CH基团.通过CH基团在-Al2O3(0001)表面上的迁移聚集首先形成能量较低的(CH)x结构.模拟研究(CH)x对揭示后续石墨烯的形核生长机理具有重要意义.
    At present, high quality graphene is synthesized mainly by chemical vapor deposition. It is crucial to decompose and adsorb methane (CH4) on the surface of substrate before CH4 grows into graphene. The graphene is grown mainly on metal substrate due to the catalytic effect of metal. It is difficult to grow graphene thin film on the surface of non-metallic substrate, especially on the surface of -Al2O3 (0001). In this paper, the density functional theory based generalized gradient approximation method is applied to simulating the nucleation of graphene on -Al2O3 (0001) surface, synthesized by chemical vapor deposition. First, we establish a scientific -Al2O3 (0001) surface model, then simulate the decomposition process of CH4 on -Al2O3 (0001) surface by calculating the adsorption sites and adsorption configurations of groups and atoms. Finally, we investigate the groups of CH4 decomposition and atom coupling process on -Al2O3 (0001) surface. The results show that the CH3 groups, C and H atoms are preferentially adsorbed at the top of the O atoms, and the adsorption energies are -2.428 eV,-4.903 eV, and -4.083 eV, respectively. The CH2 and CH groups are preferentially adsorbed on the bridge between O and Al atoms with the adsorption energies of -4.460 eV and -3.940 eV, respectively. The decomposition of CH4 on -Al2O3 (0001) surface is an endothermic process. It requires higher energy and cross reactive energy barrier for CH4 to be completely decomposed into C atom, which makes it difficult that the C atom stays on the substrate surface. The coupling process among CH groups on the surface of -Al2O3 (0001) is an exothermic process. When CH and CH groups are coupled, the energy of the system decreases by 4.283 eV. When (CH)2 and CH groups are coupled, the energy of the system decreases by 3.740 eV. The (CH)x can be obtained by continuous migration and coupling between the CH groups on the surface of the -Al2O3 (0001), and (CH)x group is a precursor of graphene growth. The energy of the system decreases in the process. The above results show that the activated atom or group of graphene nucleation is not C atom but CH group. The CH group migration and aggregation on the surface of -Al2O3 (0001) give priority to the formation of lower energy (CH)x structure. In order to better understand the microscopic growth process of graphene on sapphire, it is important to study the role of (CH)x in the surface of sapphire for revealing the nucleation mechanism of graphene.
      通信作者: 李多生, duosheng.li@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51562027)和江苏省精密与微细制造技术重点实验室基金(批准号:JKL2015001)资助的课题.
      Corresponding author: Li Duo-Sheng, duosheng.li@nchu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51562027) and the Jiangsu Key Laboratory of Precision and Micro Manufacturing Technology Foundation, China (Grant No. JKL2015001).
    [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [2] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究.  , 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响.  , 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [4] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [5] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [6] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [7] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [8] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究.  , 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [9] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [10] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [11] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [12] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [13] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [16] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究.  , 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
计量
  • 文章访问数:  6013
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-07-25
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map