搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光加速质子参数表征的带电粒子活化测谱技术

贺书凯 刘东晓 矫金龙 邓志刚 滕建 张博 张智猛 洪伟 谷渝秋

引用本文:
Citation:

用于激光加速质子参数表征的带电粒子活化测谱技术

贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋

Charged paricle activation analysis for characterizing parameters of laser-accelerated protons

He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu,
PDF
导出引用
  • 基于传统带电粒子活化分析技术,发展了一种用于激光加速质子参数表征的带电粒子活化测谱方法.激光加速质子轰击不同厚度铜薄膜组成的诊断滤片堆栈,使铜片活化,通过测量各铜片活度及活性区的大小,获得加速质子的空间积分能谱、角分布等参数.详细讨论了活化测谱的滤片堆栈诊断排布、符合测量及解谱方法,并对该方法的可靠性进行了自洽检验;在XG-Ⅲ皮秒激光装置上开展了带电粒子活化测谱实验,利用该诊断方法,得到了加速质子的角分布、空间积分能谱等参数,实验获得的质子最高截止能量18 MeV,激光能量到质子(4 MeV)的转换效率为1.07%.
    The protons accelerated by ultra-high intensity laser have been extensively studied. The most commonly used detectors for measuring laser-driven proton are Tomspon parabola ion energy analyser (TP) and filtered nuclear track detectors, such as radiochromic films (RCF). The TP uses a parallel magneto-electric field to distinguish ions. This conventional technique can precisely identify the species and energy spectra of ions. However, the strong electromagnetic field produced by the laser-plasma interaction has an effect on TP, which results in no spatial resolution of TP. The RCF can give the spatial integration spectrum of proton, but it is easy to be saturated and cannot be reused anymore. In this paper, we present a method based on the traditional charged particle activation analysis and the gamma-gamma coincidence measurement to measure the spectrum of protons accelerated by ultra intense lasers. In this method, a copper plate stack is placed in the proton emission direction. Colliding with MeV proton converts 63Cu in the copper plates into radionuclide 63Zn whose decay can be easily observed and measured. Proton spectrum is then recovered from 63Zn decay counts from layers in the copper stack. The layout of diagnostics and the method to solve proton spectrum are discussed in detail and a self-consistent test is given. This spectrum analysis method is used in a laser-driven proton acceleration experiment carried out on XG-Ⅲ laser facility. The results show that protons up to 18 MeV are obtained, and the spatial integrated spectrum and a laser-proton conversion efficiency of 1.07% are achieved. In conclusion, our method has some advantages as a laser-driven ion diagnostic tool. It has no saturation problem and is not affected by strong electromagnetic fields. The basic principle of charged particle activation analysis is based on nuclear reaction, and can be extended to the measuring of other charged particle beams besides protons, such as deuterons, helium ions produced by ultra-high intensity laser.
      通信作者: 洪伟, jminhong@126.com
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2013A0103003)和科技部重大科学仪器设备开发专项(批准号:2012YQ03014206)资助的课题.
      Corresponding author: Gu Yu-Qiu, jminhong@126.com
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Major Special Scientific Instruments and Equipment Development of Ministry of Science and Technology, China (Grant No. 2012YQ03014206).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Wagner F, Deppert O, Brabetz C, et al. 2016 Phys. Rev. Lett. 116 205002

    [3]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese)[董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方2010 59 8733]

    [4]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [5]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y, Photonuclear 2000 Phys. Rev. Lett. 84 903

    [6]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [7]

    Schwoerer H, Ewald F, Sauerbrey R, Galy J, Magill J, Rondinella V, Schenkel R, Butz T 2003 Europhys. Lett. 61 47

    [8]

    Heinrich S, Joseph M, Burgard B 2006 Laser and Nuclei:Application of Ultrahigh Intensity Lasers in Nuclear Science (Lecture Notes in Physics 694) (Berlin:Springer Press) pp25-45

    [9]

    Wang N Y 2008 Physics 37 9 (in Chinese)[王乃彦2008物理37 9]

    [10]

    Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M, Zare S 2010 Energy Convers. Manag. 51 636

    [11]

    Petrov G M, Higginson D P, Davis J, Petrova T B, McNaney J M, McGuffey C, Qiao B, Beg F N 2012 Phys. Plasmas 19 093106

    [12]

    Lefebvre E, Humieres E, Fritzler S, Malka V 2006 J. Appl. Phys. 100 113308

    [13]

    Zhao G Q, Ren C G 1989 Nuclear Analyticle Techniques (Beijing:Atomic Energy Press) p40(in Chinese)[赵国庆, 任炽刚1989核分析技术(北京:原子能出版社)第40页]

    [14]

    Cobble J A, Flippo K A, Offermann D T, Lopez F E, Oertel J A, Mastrosimone D, Letzring S A, Sinenian N 2011 Rev. Sci. Instrum. 82 113504

    [15]

    Morrison J T, Willis C, Freeman R R, van Woerkom L 2011 Rev. Sci. Instrum. 82 033506

    [16]

    Nurnberg F, Schollmeier M, Brambrink E, Blazevic A, Carroll D C, Flippo K, Gautier D C, Geissel M, Harres K, Hegelich B M, Lundh O, Markey K, McKenna P, Neely D, Schreiber J, Roth M 2009 Rev. Sci. Instrum. 80 033301

    [17]

    Clark E 2001 Ph. D. Dissertation (London:University of London)

    [18]

    Santala M I K, Zepf M, Beg F N, Clark E L, Dangor A E, Krushelnick K, Tatarakis M, Watts I, Ledingham K W D, McCanny T, Spencer I, Machacek A C, Allott R, Clarke R J, Norreys P A 2001 Appl. Phys. Lett. 78 19

    [19]

    Yang J M, McKenna P, Ledingham K W D, McCanny T, Shimizu S, Robson L, Clarke R J, Neely D, Norreys P A, Wei M S, Krushelnick K, Nilson P, Mangles S P D, Singhal R P 2004 Appl. Phys. Lett. 84 675

    [20]

    Meadows J W 1953 Phys. Rev. 91 885

    [21]

    Higginson D P, McNaney J M, Swift D C, Petrov G M, Davis J, Frenje J A, Jarrott L C, Kodama R, Lancaster K L, Mackinnon A J, Nakamura H, Patel P K, Tynan G, Beg F N 2011 Phys. Plasmas 18 100703

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Wagner F, Deppert O, Brabetz C, et al. 2016 Phys. Rev. Lett. 116 205002

    [3]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese)[董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方2010 59 8733]

    [4]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [5]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y, Photonuclear 2000 Phys. Rev. Lett. 84 903

    [6]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [7]

    Schwoerer H, Ewald F, Sauerbrey R, Galy J, Magill J, Rondinella V, Schenkel R, Butz T 2003 Europhys. Lett. 61 47

    [8]

    Heinrich S, Joseph M, Burgard B 2006 Laser and Nuclei:Application of Ultrahigh Intensity Lasers in Nuclear Science (Lecture Notes in Physics 694) (Berlin:Springer Press) pp25-45

    [9]

    Wang N Y 2008 Physics 37 9 (in Chinese)[王乃彦2008物理37 9]

    [10]

    Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M, Zare S 2010 Energy Convers. Manag. 51 636

    [11]

    Petrov G M, Higginson D P, Davis J, Petrova T B, McNaney J M, McGuffey C, Qiao B, Beg F N 2012 Phys. Plasmas 19 093106

    [12]

    Lefebvre E, Humieres E, Fritzler S, Malka V 2006 J. Appl. Phys. 100 113308

    [13]

    Zhao G Q, Ren C G 1989 Nuclear Analyticle Techniques (Beijing:Atomic Energy Press) p40(in Chinese)[赵国庆, 任炽刚1989核分析技术(北京:原子能出版社)第40页]

    [14]

    Cobble J A, Flippo K A, Offermann D T, Lopez F E, Oertel J A, Mastrosimone D, Letzring S A, Sinenian N 2011 Rev. Sci. Instrum. 82 113504

    [15]

    Morrison J T, Willis C, Freeman R R, van Woerkom L 2011 Rev. Sci. Instrum. 82 033506

    [16]

    Nurnberg F, Schollmeier M, Brambrink E, Blazevic A, Carroll D C, Flippo K, Gautier D C, Geissel M, Harres K, Hegelich B M, Lundh O, Markey K, McKenna P, Neely D, Schreiber J, Roth M 2009 Rev. Sci. Instrum. 80 033301

    [17]

    Clark E 2001 Ph. D. Dissertation (London:University of London)

    [18]

    Santala M I K, Zepf M, Beg F N, Clark E L, Dangor A E, Krushelnick K, Tatarakis M, Watts I, Ledingham K W D, McCanny T, Spencer I, Machacek A C, Allott R, Clarke R J, Norreys P A 2001 Appl. Phys. Lett. 78 19

    [19]

    Yang J M, McKenna P, Ledingham K W D, McCanny T, Shimizu S, Robson L, Clarke R J, Neely D, Norreys P A, Wei M S, Krushelnick K, Nilson P, Mangles S P D, Singhal R P 2004 Appl. Phys. Lett. 84 675

    [20]

    Meadows J W 1953 Phys. Rev. 91 885

    [21]

    Higginson D P, McNaney J M, Swift D C, Petrov G M, Davis J, Frenje J A, Jarrott L C, Kodama R, Lancaster K L, Mackinnon A J, Nakamura H, Patel P K, Tynan G, Beg F N 2011 Phys. Plasmas 18 100703

  • [1] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究.  , 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] 马文君, 刘志鹏, 王鹏杰, 赵家瑞, 颜学庆. 激光加速高能质子实验研究进展及新加速方案.  , 2021, 70(8): 084102. doi: 10.7498/aps.70.20202115
    [3] 靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究.  , 2021, 70(7): 074202. doi: 10.7498/aps.70.20201648
    [4] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析.  , 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [5] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究.  , 2018, 67(22): 225202. doi: 10.7498/aps.67.20181504
    [6] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应.  , 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [7] 周林, 蒋世伦, 祁建敏, 王立宗. 反冲质子磁分析技术用于氘氚中子能谱测量研究.  , 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [8] 丁光涛. 磁场中带电粒子阻尼运动的分析力学表示.  , 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [9] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法.  , 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [10] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构.  , 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [11] 孙 健, 白敏冬, 毛程奇, 白希尧. 单极性带电粒子浓度测试方法的研究.  , 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [12] 邓成良, 邵明珠, 罗诗裕. 带电粒子同超晶格的相互作用与系统的混沌行为.  , 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [13] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [14] 黄湘友. 质谱仪中带电粒子运动的双波描述.  , 1996, 45(5): 729-737. doi: 10.7498/aps.45.729
    [15] 黄湘友, 刘全慧, 田旭, 裘忠平. 均匀磁场中带电粒子运动的双波描述.  , 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [16] 杨金刚, 李卫江, 郭清江, 朱光华, 姜承烈. 带有磁分析器的半导体探测器带电粒子谱仪.  , 1974, 23(1): 52-62. doi: 10.7498/aps.23.52
    [17] 王珮. 高速带电粒子与核子的边缘电磁作用.  , 1965, 21(8): 1533-1543. doi: 10.7498/aps.21.1533
    [18] А.Ф.杜那耶切夫, В.С.潘多也夫, Ю.Д.布罗高舒金, 唐孝威, М.Н.哈恰图梁. 用γ-γ符合方法测量潘诺夫斯基比值.  , 1962, 18(4): 218-220. doi: 10.7498/aps.18.218
    [19] 王璈, 李鹤年, 简而智, 萧健. 高能带电粒子直接产生电子对.  , 1961, 17(6): 263-272. doi: 10.7498/aps.17.263
    [20] 徐永昌, 郑林生. 在γ-γ符合测量中康普顿散射所引起的符合.  , 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
计量
  • 文章访问数:  5781
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-07-18
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map