搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于CARS激发源的全光纤飞秒脉冲谱压缩

江俊峰 黄灿 刘琨 张永宁 王双 张学智 马喆 陈文杰 于哲 刘铁根

引用本文:
Citation:

用于CARS激发源的全光纤飞秒脉冲谱压缩

江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根

All-fiber spectral compression of femtosecond pulse for coherent anti-Stokes Raman scattering excitation source

Jiang Jun-Feng, Huang Can, Liu Kun, Zhang Yong-Ning, Wang Shuang, Zhang Xue-Zhi, Ma Zhe, Chen Wen-Jie, Yu Zhe, Liu Tie-Gen
PDF
导出引用
  • 进行了基于光纤预啁啾和自相位调制的多模/单模组合式全光纤啁啾谱压缩研究.提出利用多模光纤模式估计群速度色散均值的方法,并将该估计值作为啁啾参量分析的计算参数,仿真计算了50/125 m折射率渐变多模光纤的群速度色散均值及其与单模光纤在不同长度比值下的光谱压缩效果.采用三种折射率渐变多模光纤进行实验,对比分析了折射率渐变多模光纤的芯径大小及其与单模光纤的长度比值对光谱压缩效果的影响.实验结果表明使用50/125 m折射率渐变多模光纤获得光谱最大压缩比为5.796,谱宽为2.243 nm,与理论仿真一致;使用105/125 m折射率渐变多模光纤,可进一步提高压缩比至152.941,输出谱宽为0.085 nm的光脉冲.将此脉冲用于相干反斯托克斯拉曼散射光谱探测,理论光谱分辨率可达1.386 cm-1.
    Coherent anti-Stokes Raman scattering (CARS) imaging of femtosecond pulses has been a research hotspot in recent years, but the wide spectrum of the femtosecond pulse limits the spectral resolution of CARS imaging. Spectral compression is considered as an effective method to solve this problem. In this work, an all-fiber chirp spectral compression method of graded-index multi-mode fiber/single-mode fiber (GI-MMF/SMF) structure based on fiber pre-chirp and self-phase modulation is presented. It can be used as a CARS excitation source to increase the spectral resolution of CARS imaging. In the section of numerical simulation, the mean group velocity dispersion value of GI-MMF is used as a numerical parameter of the chirp analysis, which is estimated by analyzing modes of GI-MMF. On one hand, the mode field distributions in GI-MMF are simulated numerically by the finite-difference time-domain method, and these different modes are divided into eight mode groups. On the other hand, the energy proportion of each mode group is regarded as a weight value. Then we can obtain a mean group velocity dispersion value of 50/125 m GI-MMF, which is -2.28710-5 fs2/nm, by calculating the sum of group velocity dispersion weight values of mode groups. The results of spectral compression with different length ratios of 50/125 m GI-MMF to 780HP SMF are also analyzed based on the generalized nonlinear Schrdinger equation and split-step Fourier algorithm. The spectral width of 2.486 nm and the compression ratio of 5.230 are calculated, when the length ratio of 50/125 m GI-MMF to 780HP SMF is 1.2. In the section of experiment, three kinds of GI-MMFs with different core diameters are used in the experiment, the influences of the core diameter and the length ratio of GI-MMF to 780HP SMF on the spectral compression are investigated. The results show that the spectral width of 2.243 nm, corresponding to the compression ratio of 5.796 is obtained, when the length ratio of 50/125 m GI-MMF to 780HP SMF is 1.2, which is consistent with the simulation result. Under the condition of the same length ratio, the use of 105/125 m GI-MMF can raise the compression ratio to 152.941, and the spectral width of output pulse is 0.085 nm. When the pulse is applied to CARS spectrum detection, the theoretical spectral resolution can be 1.386 cm-1. The experimental results show that the spectral compression way to improve spectral resolution of CARS imaging is effective. This spectral compression system is characterized by simple structure, and high and controllable compression ratio, which provides theoretical and experimental basis for the all-fiber high spectral resolution CARS excitation source research.
      通信作者: 江俊峰, jiangjfjxu@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61378043,61675152,61227011,61475114,61505139)、国家重大科学仪器设备开发专项(批准号:2013YQ030915)、天津市自然科学基金(批准号:13JCYBJC16200)和深圳市科技创新委员会项目(批准号:JCYJ20120831153904083)资助的课题.
      Corresponding author: Jiang Jun-Feng, jiangjfjxu@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378043, 61675152, 61227011, 61475114, 61505139), the National Instrumentation Program of China (Grant No. 2013YQ030915), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC16200), and the Shenzhen Science and Technology Research Project, China (Grant No. JCYJ20120831153904083).
    [1]

    Xu C, Wise F W 2013 Nature Photon. 7 875

    [2]

    Saint-Jalm S, Berto P, Jullien L, Andresen E R, Rigneault H 2014 J. Raman Spectrosc. 45 515

    [3]

    Chen K, Wu T, Wei H Y, Li Y 2016 Opt. Lett. 41 2628

    [4]

    Jiang J F, Wu H, Liu K, Wang S, Huang C, Zhang X Z, Yu Z, Chen W J, Ma Z, Hui R Q, Jia W J, Liu T G 2017 Chin. J. Lasers 44 0101002 (in Chinese)[江俊峰, 吴航, 刘琨, 王双, 黄灿, 张学智, 于哲, 陈文杰, 马喆, 惠荣庆, 贾文娟, 刘铁根2017中国激光44 0101002]

    [5]

    Lamb E S, Wise F W 2015 Biomed. Opt. Express 6 3248

    [6]

    Oberthaler M, Hpfel R A 1993 Appl. Phys. Lett. 63 1017

    [7]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [8]

    Andresen E R, Thgersen J, Keiding S R 2005 Opt. Lett. 30 2025

    [9]

    Limpert J, Gabler T, Liem A, Zellmer H, Tnnermann A 2002 Appl. Phys. B 74 191

    [10]

    Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A, Zheltikov A M 2009 Opt. Lett. 34 662

    [11]

    Nishizawa N, Takahashi K, Ozeki Y, Itoh K 2010 Opt. Express 18 11700

    [12]

    Chuang H P, Huang C B 2011 Opt. Lett. 36 2848

    [13]

    Chao W T, Lin Y Y, Peng J L, Huang C B 2014 Opt. Lett. 39 853

    [14]

    Toneyan H, Zeytunyan A, Zadoyan R, Mouradian L 2016 J. Phys. 672 012016

    [15]

    Planas S A, Pires N L, Brito C H, Fragnito H L 1993 Opt. Lett. 18 699

    [16]

    Agrawal G P 2009 Nonlinear Fiber Optics (Amsterdam:Elsevier) pp37-44, 56-57

    [17]

    Nehashi K, Koike Y 2009 Proc. SPIE 7213 721318

    [18]

    Liu Y, Rahman B M A, Ning Y N, Grattan K T V 1995 Appl. Opt. 34 1540

    [19]

    Finot C, Boscolo S 2016 J. Opt. Soc. Am. B 33 760

    [20]

    Mortimore D B, Wright J V 1986 Electron. Lett. 22 318

    [21]

    O' Brien E M, Hussey C D 1999 Electron. Lett. 35 168

    [22]

    Su L, Chiang K S, Lu C 2006 Appl. Opt. 44 7394

  • [1]

    Xu C, Wise F W 2013 Nature Photon. 7 875

    [2]

    Saint-Jalm S, Berto P, Jullien L, Andresen E R, Rigneault H 2014 J. Raman Spectrosc. 45 515

    [3]

    Chen K, Wu T, Wei H Y, Li Y 2016 Opt. Lett. 41 2628

    [4]

    Jiang J F, Wu H, Liu K, Wang S, Huang C, Zhang X Z, Yu Z, Chen W J, Ma Z, Hui R Q, Jia W J, Liu T G 2017 Chin. J. Lasers 44 0101002 (in Chinese)[江俊峰, 吴航, 刘琨, 王双, 黄灿, 张学智, 于哲, 陈文杰, 马喆, 惠荣庆, 贾文娟, 刘铁根2017中国激光44 0101002]

    [5]

    Lamb E S, Wise F W 2015 Biomed. Opt. Express 6 3248

    [6]

    Oberthaler M, Hpfel R A 1993 Appl. Phys. Lett. 63 1017

    [7]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [8]

    Andresen E R, Thgersen J, Keiding S R 2005 Opt. Lett. 30 2025

    [9]

    Limpert J, Gabler T, Liem A, Zellmer H, Tnnermann A 2002 Appl. Phys. B 74 191

    [10]

    Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A, Zheltikov A M 2009 Opt. Lett. 34 662

    [11]

    Nishizawa N, Takahashi K, Ozeki Y, Itoh K 2010 Opt. Express 18 11700

    [12]

    Chuang H P, Huang C B 2011 Opt. Lett. 36 2848

    [13]

    Chao W T, Lin Y Y, Peng J L, Huang C B 2014 Opt. Lett. 39 853

    [14]

    Toneyan H, Zeytunyan A, Zadoyan R, Mouradian L 2016 J. Phys. 672 012016

    [15]

    Planas S A, Pires N L, Brito C H, Fragnito H L 1993 Opt. Lett. 18 699

    [16]

    Agrawal G P 2009 Nonlinear Fiber Optics (Amsterdam:Elsevier) pp37-44, 56-57

    [17]

    Nehashi K, Koike Y 2009 Proc. SPIE 7213 721318

    [18]

    Liu Y, Rahman B M A, Ning Y N, Grattan K T V 1995 Appl. Opt. 34 1540

    [19]

    Finot C, Boscolo S 2016 J. Opt. Soc. Am. B 33 760

    [20]

    Mortimore D B, Wright J V 1986 Electron. Lett. 22 318

    [21]

    O' Brien E M, Hussey C D 1999 Electron. Lett. 35 168

    [22]

    Su L, Chiang K S, Lu C 2006 Appl. Opt. 44 7394

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术.  , 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 王井上, 王栋梁, 常国庆. 基于色散管理的自相位调制光谱展宽滤波技术.  , 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [3] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生.  , 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [4] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统.  , 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [5] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器.  , 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [6] 孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春. 高非线性光纤正常色散区脉冲尾部非频移分量演化.  , 2019, 68(11): 114210. doi: 10.7498/aps.68.20190111
    [7] 孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬. 相干彩虹的形成机制.  , 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [8] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究.  , 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [9] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究.  , 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [10] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾.  , 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [11] 谌鸿伟, 韦会峰, 刘通, 周旋风, 李江, 童维军, 陈子伦, 陈胜平, 侯静, 陆启生. 七芯光子晶体光纤中百瓦量级超连续谱的产生.  , 2014, 63(4): 044205. doi: 10.7498/aps.63.044205
    [12] 谌鸿伟, 郭良, 靳爱军, 陈胜平, 侯静, 陆启生. 基于光子晶体光纤的百瓦量级超连续谱光源研究.  , 2013, 62(15): 154207. doi: 10.7498/aps.62.154207
    [13] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法.  , 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [14] 张婧, 潘炜, 闫连山, 罗斌. 基于光纤自相位调制多波长全光再生的色散管理优化.  , 2010, 59(10): 7002-7007. doi: 10.7498/aps.59.7002
    [15] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究.  , 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [16] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究.  , 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究.  , 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究.  , 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原.  , 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究.  , 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  5665
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-24
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map