搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半解析自洽理论研究相对论激光脉冲驱动下阿秒X射线源的产生

王少义 谭放 吴玉迟 范全平 矫金龙 董克攻 钱凤 曹磊峰 谷渝秋

引用本文:
Citation:

基于半解析自洽理论研究相对论激光脉冲驱动下阿秒X射线源的产生

王少义, 谭放, 吴玉迟, 范全平, 矫金龙, 董克攻, 钱凤, 曹磊峰, 谷渝秋

Attosecond X-ray generation driven by the relativistic laser pulse based on the semi-analytical self-consistent theory

Wang Shao-Yi, Tan Fang, Wu Yu-Chi, Fan Quan-Ping, Jiao Jin-Long, Dong Ke-Gong, Qian Feng, Cao Lei-Feng, Gu Yu-Qiu
PDF
导出引用
  • 发展了一种描述相对论激光脉冲与稠密等离子体相互作用产生阿秒X射线源的半解析自洽理论.该理论模型不仅可以获得等离子体界面的振荡轨迹、振荡面电场和磁场等物理参数,而且能够精确计算出激光脉冲驱动下阿秒X射线源的频谱,结果与粒子模拟程序一致.理论计算结果表明阿秒X射线源的辐射特性与等离子体界面随时演化过程相关,在周期量级激光场驱动下等离子体界面振荡振幅呈现中心不对称,通过改变激光场的载波包络相位实现对等离子体界面振荡的控制,获得准单阿秒X射线源.
    A semi-analytical theory of the interaction between a relativistic laser pulse and the overdense plasma to generate an attosecond X-ray source is presented.The physical parameters such as plasma oscillation trajectory,surface electric field and magnetic field can be given by this model,and the high-order harmonic spectrum is also calculated accurately from the solution of the plasma surface oscillations,the obtained result is consistent with the result from the PIC simulation program.This model can be valid for arbitrary laser duration,solid densities,and a large set of laser peak intensities (1018-1021 W/cm2).In addition,the model is not applicable for the small laser focal spots (less than ten times the laser wavelength),although two-dimensional effects such as the pulse finite size may significantly change the movement progress of the electrons,the laser spot can be larger than ten times the laser wavelength under the general laboratory conditions. In this model,the laser energy absorption is small,and the electron kinetic pressure is also small.Due to the radiation pressure of the laser pulse,the electrons are pushed into the solid,forming a very steep density profile.As a result,the relevant forces makes the electrons ponderomotive and the longitudinal electric field is caused by the strong electric charge separation effect.This semi-analytical self-consistent theory can give us a reasonable physical description, and the momentum equation and the continuity equation of the electric and magnetic field at the boundary allow us to determine the plasma surface oscillations.The spatiotemporal characteristics of the reflected magnetic and electric field at the boundary can allow us to determine the emitting characteristics of the high order harmonic. Our results show that the radiation of the attosecond X-ray source is dependent on the plasma surface oscillation. The plasma surface oscillates with a duration about twice the laser optical cycle,and the high-order harmonics also emit twice the laser optical cycle,thus an attosecond pulse train driven by the multi-cycle laser pulse can be formed.By using a few-cycle laser field,the smooth high-order harmonics can be obtained,which leads to a single attosecond pulse with high signal-to-noise ratio.In a word,our calculation results show that the time evolution progress of plasma surface can be controlled by changing the carrier envelope phase of the few-cycle laser pulse,and then the radiation progress of the high-order harmonics can be influenced as result of a single attosecond X-ray pulse.
      通信作者: 吴玉迟, wuyc@caep.cn
    • 基金项目: 国家重大科学仪器专项(批准号:2012YQ130125)、国家自然科学基金(批准号:11405159,11375161,11174259)、国家自然科学基金联合基金(批准号:U1630246)、中国工程物理研究院院长基金(批准号:2014-1-017)、中国工程物理研究院科技发展基金(批准号:2015B0401090)、重点实验室基金(批准号:9140C680302130C68242)和国家科技部重点研发计划(批准号:2016YFA0401100)资助的课题.
      Corresponding author: Wu Yu-Chi, wuyc@caep.cn
    • Funds: Project supported by the National Science Instruments Major Project of China (Grant No. 2012YQ130125), the National Natural Science Foundation of China (Grant Nos. 11405159, 11375161, 11174259), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1630246), the President Foundation of China Academy of Engineering Physics (Grant No. 2014-1-017), the Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0401090), the Key Laboratory Foundation of the Sciences and Technology on Plasma Physics Laboratory, China (Grant No. 9140C680302130C68242), and the National Key Research and Development Technology Project of China (Grant No. 2016YFA0401100).
    [1]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [2]

    Rundquist A, Durfee Ⅲ C G, Chang Z, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412

    [3]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [4]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 107 053004

    [5]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [6]

    Faure J, Glinec Y, Pukhov A, et al. 2004 Nature 431 541

    [7]

    Chen L M, Liu F, Wang M, et al. 2010 Phys. Rev. Lett. 104 215004

    [8]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [9]

    Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M, Leone S R 2006 Phys. Rev. Lett. 97 163901

    [10]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [11]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251

    [12]

    Wang S, Hong W, Lan P, Zhang Q, Lu P 2009 J. Phys. B 42 105601

    [13]

    Zhang Q, Lu P, Lan P, Hong W, Yang Z 2008 Opt. Express 16 9795

    [14]

    Zeng Z, Zheng Y, Cheng Y, Li R, Xu Z 2012 J. Phys. B 45 074004

    [15]

    Zhang Q, He L, Lan P, Lu P 2014 Opt. Express 22 13213

    [16]

    Wei P, Miao J, Zeng Z, Li C, Ge X, Li R, Xu Z 2013 Phys. Rev. Lett. 110 233903

    [17]

    Zhong H Y, Guo J, Zhang H D, Du H, Liu H X 2015 Chin. Phys. B 24 073202

    [18]

    Lewenstein M, Balcou P, Ivanov M Yu, L' Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [20]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [21]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wel M S, Krushelnick K, Tatarakis M, Vakakis, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456

    [22]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [23]

    Pan K Q, Zheng C Y, He X T 2016 Phys. Plasma 23 023109

    [24]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese)[白易灵, 张秋菊, 田密, 崔春红2013 62 125206]

    [25]

    Zhang X M, Shen B F, Shi Y, Wang X F, Zhang L, Wang W P, Xu J C, Yi L Q, Xu Z Z 2015 Phys. Rev. Lett. 14 173901

    [26]

    Qur F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [27]

    Zhang Q J, Sheng Z M, Zhang J 2003 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛政明, 张杰2003 53 2180]

    [28]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮2003 52 1412]

    [29]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745

    [30]

    Baeva T, Gordienko S, Robinson A P L, Norreys P A 2011 Phys. Plasma 18 056702

    [31]

    Liu J S, Xia C, Liu L, Li R X, Xu Z Z 2009 Laser Particale Beams 27 365

    [32]

    Sanz J, Debale A, Mima K 2012 Phys. Rev. E 85 046411

    [33]

    Debale A, Sanz J, Gremillet L, Mima K 2013 Phys. Plasmas 20 053107

    [34]

    Debayle A, Sanz J, Gremiller L 2015 Phys. Rev. E 92 053108

  • [1]

    Bartels R A, Paul A, Green H, Kapteyn H C, Murnane M M, Backus S, Christov I P, Liu Y, Attwood D, Jacobsen C 2002 Science 297 376

    [2]

    Rundquist A, Durfee Ⅲ C G, Chang Z, Herne C, Backus S, Murnane M M, Kapteyn H C 1998 Science 280 1412

    [3]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues Th, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [4]

    Zhou Y M, Huang C, Liao Q, Lu P X 2012 Phys. Rev. Lett. 107 053004

    [5]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [6]

    Faure J, Glinec Y, Pukhov A, et al. 2004 Nature 431 541

    [7]

    Chen L M, Liu F, Wang M, et al. 2010 Phys. Rev. Lett. 104 215004

    [8]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [9]

    Pfeifer T, Gallmann L, Abel M J, Nagel P M, Neumark D M, Leone S R 2006 Phys. Rev. Lett. 97 163901

    [10]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [11]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251

    [12]

    Wang S, Hong W, Lan P, Zhang Q, Lu P 2009 J. Phys. B 42 105601

    [13]

    Zhang Q, Lu P, Lan P, Hong W, Yang Z 2008 Opt. Express 16 9795

    [14]

    Zeng Z, Zheng Y, Cheng Y, Li R, Xu Z 2012 J. Phys. B 45 074004

    [15]

    Zhang Q, He L, Lan P, Lu P 2014 Opt. Express 22 13213

    [16]

    Wei P, Miao J, Zeng Z, Li C, Ge X, Li R, Xu Z 2013 Phys. Rev. Lett. 110 233903

    [17]

    Zhong H Y, Guo J, Zhang H D, Du H, Liu H X 2015 Chin. Phys. B 24 073202

    [18]

    Lewenstein M, Balcou P, Ivanov M Yu, L' Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117

    [19]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [20]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [21]

    Dromey B, Zepf M, Gopal A, Lancaster K, Wel M S, Krushelnick K, Tatarakis M, Vakakis, Moustaizis S, Kodama R, Tampo M, Stoeckl C, Clarke R, Habara H, Neely D, Karsch S, Norreys P 2006 Nat. Phys. 2 456

    [22]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520

    [23]

    Pan K Q, Zheng C Y, He X T 2016 Phys. Plasma 23 023109

    [24]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese)[白易灵, 张秋菊, 田密, 崔春红2013 62 125206]

    [25]

    Zhang X M, Shen B F, Shi Y, Wang X F, Zhang L, Wang W P, Xu J C, Yi L Q, Xu Z Z 2015 Phys. Rev. Lett. 14 173901

    [26]

    Qur F, Thaury C, Monot P, Dobosz S, Martin P, Geindre J P, Audebert P 2006 Phys. Rev. Lett. 96 125004

    [27]

    Zhang Q J, Sheng Z M, Zhang J 2003 Acta Phys. Sin. 53 2180 (in Chinese)[张秋菊, 盛政明, 张杰2003 53 2180]

    [28]

    Li K, Zhang J, Yu W 2003 Acta Phys. Sin. 52 1412 (in Chinese)[李昆, 张杰, 余玮2003 52 1412]

    [29]

    Bulanov S V, Naumova N M, Pegoraro F 1994 Phys. Plasmas 1 745

    [30]

    Baeva T, Gordienko S, Robinson A P L, Norreys P A 2011 Phys. Plasma 18 056702

    [31]

    Liu J S, Xia C, Liu L, Li R X, Xu Z Z 2009 Laser Particale Beams 27 365

    [32]

    Sanz J, Debale A, Mima K 2012 Phys. Rev. E 85 046411

    [33]

    Debale A, Sanz J, Gremillet L, Mima K 2013 Phys. Plasmas 20 053107

    [34]

    Debayle A, Sanz J, Gremiller L 2015 Phys. Rev. E 92 053108

  • [1] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲.  , 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验.  , 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [5] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究.  , 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [6] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生.  , 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [7] 汪礼锋, 贺新奎, 滕浩, 运晨霞, 张伟, 魏志义. 5fs驱动激光脉冲的高次谐波选择性优化.  , 2014, 63(22): 224103. doi: 10.7498/aps.63.224103
    [8] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [9] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究.  , 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [10] 张春丽, 冯志波, 祁月盈, 车继馨. 任意偏振激光作用下二维模型H原子的谐波发射.  , 2011, 60(8): 083201. doi: 10.7498/aps.60.083201
    [11] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律.  , 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [12] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟.  , 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [13] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [14] 陈基根, 陈 高, 曾思良, 杨玉军, 朱颀人. 载波相位对超短脉冲谐波谱的影响.  , 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [15] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [16] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟.  , 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟.  , 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移.  , 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲.  , 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [20] 李 昆, 张 杰, 余 玮. 激光与固体靶作用产生高次谐波的振荡镜面模型.  , 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
计量
  • 文章访问数:  5610
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-18
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map