搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自驱动颗粒体系中的熵力

华昀峰 章林溪

引用本文:
Citation:

自驱动颗粒体系中的熵力

华昀峰, 章林溪

Entropy forces of nanoparticles in self-propelled systems

Hua Yun-Feng, Zhang Lin-Xi
PDF
导出引用
  • 在许多纳米复合材料体系中熵力(entropy force)是普遍存在的,但由于熵力的存在会导致纳米颗粒的凝聚从而降低其许多性能,因此在大多数情况下熵力的存在对体系并无益处,所以研究如何减小熵力对体系的影响是非常重要的.不带角速度的自驱动粒子在熵力作用下会集聚在纳米颗粒(或者纳米棒)周围,这会对纳米颗粒(或者纳米棒)产生很大的相互作用力.对于纳米颗粒,在不带角速度的自驱动粒子体系中存在着非常大的排斥力.而对于纳米棒,由于纳米棒内外的不对称性,使得两个纳米棒之间会产生吸引-排斥转变,同时这个吸引-排斥转变与纳米棒之间的距离有关.当自驱动粒子加上一个自转角速度之后,熵力的作用就大大减弱,纳米颗粒不再集聚.研究结果有助于对非平衡态下纳米颗粒(或纳米棒)之间熵相互作用力的认识.
    Entropy force is fairly ubiquitous in nature, but it is not practically beneficial for most cases, thus how to reduce the entropic force of the system is very important. In this paper, by employing the overdamped Langevin dynamics simulations, we explore the entropy force between two large nanoparticles (or two nanorods) immersed in a self-propelled system. Self-propelled particles can be regarded as active matter, and the active matter is an interesting subject which has been studied theoretically and experimentally over the past few years. A great many biological and physical systems can be referred to as active matter systems, including molecular motors, swimming bacteria, self-propelled colloids, motile cells, and macroscopic animals. Active matter obtains energy from an external system under non-equilibrium conditions, and active particles with suitably designed constructions are able to convert energy input into the desired control of function, which has wide potential applications in a diversity of fields, such as drug delivery in medicine. Self-propelled particles without angular velocity would gather around the nanoparticles (or nanorods) under the effect of entropy force, which can induce large entropy force between nanoparticles. The interaction force between two nanoparticles is large enough, owing to the asymmetry of the system, and entropy force also depends on the distance between two nanoparticles (or two nanorods). For the case of self-propelled particles with an angular velocity, the entropic effect is weak, and the larger the angular velocity, the weaker the entropic force is. Moreover, nanoparticles will no longer assemble together because of their weak entropic forces. Meanwhile, the entropy force between two nanorods can be tuned from a long repulsion into a long range attraction by changing the distance between two nanorods. The present investigation can help us understand the entropy forces in non-equilibrium systems.
      通信作者: 章林溪, lxzhang@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21374102,21674096)资助的课题.
      Corresponding author: Zhang Lin-Xi, lxzhang@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21374102, 21674096).
    [1]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [2]

    Joanny J F, Leibler L, de Gennes P G 1979 J. Polym. Sci. Part B:Polym. Phys. 17 1073

    [3]

    Jiang Y W, Zhang D, He L L, Zhang L X 2016 J. Phys. Chem. B 120 572

    [4]

    David G R, Guevorkian K, Douezan S 2012 Science 338 910

    [5]

    Fily Y S, Henkes S, Marchetti M C 2014 Soft Matter 10 2132

    [6]

    Zhao B, Qi N, Zhang D S 2017 Mat. Rev. 31 1A

    [7]

    Ford R M, Harvet R W 2007 Adv. Mater. Res. 30 1608

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters M 2012 Soft Matter 8 5175

    [9]

    Hagen B T, Teeffelen S V, Lwen H 2011 J. Phys. Condens. Matter 23 194119

    [10]

    Leonardo R D, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte M, Mecarini F, Angelis F D, Fabrizio E D 2010 Proc. Natl. Acad. Sci. USA 107 9541

    [11]

    Ai B Q 2016 Sci. Rep. 6 18740

    [12]

    Kaiser A, Peshkov A, Sokolov A 2014 Phys. Rev. Lett. 112 158101

    [13]

    Pototsky A, Hahn A M, Stark H 2013 Phys. Rev. E 87 042124

    [14]

    Potiguar F Q, Farias G A, Ferreira W P https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0123072014 Phys. Rev. E 90 012307

    [15]

    Koumakis N, Maggi C, Leonardo R D 2014 Soft Matter 10 5695

    [16]

    Ai B Q, Zhu W J, He Y F, Zhong W R 2016 J. Stat. Mech. 17 023501

    [17]

    Wensink H, Dunkel J, Heidenreich S, Drescher K, Goldstein R, Lwen H, Yeomans J 2012 Proc. Natl. Acad. Sci. USA 109 14308

    [18]

    Cai J H, Wei X X, Fan A 2016 Polym. Bull. 4 17

    [19]

    Ran N, Martien A C S, Peter G B 2015 Phys. Rev. Lett. 114 018302

    [20]

    Hooper J B, Schweizer K S 2006 Macromolecules 39 5133

    [21]

    Harder J, Mallory S A, Tung C, Valerian C, Cacciuto A 2014 J. Chem. Phys. 141 194901

    [22]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101

    [23]

    Friedrich B M, Julicher F 2009 Phys. Rev. Lett. 103 068102

    [24]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659

    [25]

    Kummel F, ten Hagen B, Wittkowski R, Buttinoni I, Volpe G, Lwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302

    [26]

    Yamchi M Z, Naji A 2017 arXiv:1704.07262

    [27]

    Hasnain J, Menzl G, Jungblut S, Dellago C 2017 Soft Matter 13 930

  • [1]

    Asakura S, Oosawa F 1958 J. Polym. Sci. 33 183

    [2]

    Joanny J F, Leibler L, de Gennes P G 1979 J. Polym. Sci. Part B:Polym. Phys. 17 1073

    [3]

    Jiang Y W, Zhang D, He L L, Zhang L X 2016 J. Phys. Chem. B 120 572

    [4]

    David G R, Guevorkian K, Douezan S 2012 Science 338 910

    [5]

    Fily Y S, Henkes S, Marchetti M C 2014 Soft Matter 10 2132

    [6]

    Zhao B, Qi N, Zhang D S 2017 Mat. Rev. 31 1A

    [7]

    Ford R M, Harvet R W 2007 Adv. Mater. Res. 30 1608

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters M 2012 Soft Matter 8 5175

    [9]

    Hagen B T, Teeffelen S V, Lwen H 2011 J. Phys. Condens. Matter 23 194119

    [10]

    Leonardo R D, Angelani L, DellArciprete D, Ruocco G, Iebba V, Schippa S, Conte M, Mecarini F, Angelis F D, Fabrizio E D 2010 Proc. Natl. Acad. Sci. USA 107 9541

    [11]

    Ai B Q 2016 Sci. Rep. 6 18740

    [12]

    Kaiser A, Peshkov A, Sokolov A 2014 Phys. Rev. Lett. 112 158101

    [13]

    Pototsky A, Hahn A M, Stark H 2013 Phys. Rev. E 87 042124

    [14]

    Potiguar F Q, Farias G A, Ferreira W P https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0123072014 Phys. Rev. E 90 012307

    [15]

    Koumakis N, Maggi C, Leonardo R D 2014 Soft Matter 10 5695

    [16]

    Ai B Q, Zhu W J, He Y F, Zhong W R 2016 J. Stat. Mech. 17 023501

    [17]

    Wensink H, Dunkel J, Heidenreich S, Drescher K, Goldstein R, Lwen H, Yeomans J 2012 Proc. Natl. Acad. Sci. USA 109 14308

    [18]

    Cai J H, Wei X X, Fan A 2016 Polym. Bull. 4 17

    [19]

    Ran N, Martien A C S, Peter G B 2015 Phys. Rev. Lett. 114 018302

    [20]

    Hooper J B, Schweizer K S 2006 Macromolecules 39 5133

    [21]

    Harder J, Mallory S A, Tung C, Valerian C, Cacciuto A 2014 J. Chem. Phys. 141 194901

    [22]

    Nourhani A, Crespi V H, Lammert P E 2015 Phys. Rev. Lett. 115 118101

    [23]

    Friedrich B M, Julicher F 2009 Phys. Rev. Lett. 103 068102

    [24]

    Volpe G, Gigan S, Volpe G 2014 Am. J. Phys. 82 659

    [25]

    Kummel F, ten Hagen B, Wittkowski R, Buttinoni I, Volpe G, Lwen H, Bechinger C 2013 Phys. Rev. Lett. 110 198302

    [26]

    Yamchi M Z, Naji A 2017 arXiv:1704.07262

    [27]

    Hasnain J, Menzl G, Jungblut S, Dellago C 2017 Soft Matter 13 930

  • [1] 李德彰, 卢智伟, 赵宇军, 杨小宝. 自旋半经典朗之万方程一般形式的探讨.  , 2023, 72(14): 140501. doi: 10.7498/aps.72.20230106
    [2] 鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云. 量子材料的弗洛凯调控.  , 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [3] 贺志, 余敏, 王琼. 多格点相互作用对横向磁场作用下XY型自旋链中非平衡态热力学性质的影响.  , 2019, 68(24): 240506. doi: 10.7498/aps.68.20190525
    [4] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力.  , 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [5] 陈延佩, Pierre Evesque, 厚美瑛. 振动驱动颗粒气体体系的局域态本构关系的实验验证.  , 2013, 62(16): 164503. doi: 10.7498/aps.62.164503
    [6] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究.  , 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [7] 张兴刚, 胡林. 二维成分无序颗粒体系中法向力的分布.  , 2012, 61(10): 104501. doi: 10.7498/aps.61.104501
    [8] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [9] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用.  , 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [10] 唐先柱, 彭增辉, 刘永刚, 鲁兴海, 宣丽. 相变前的热力学平衡态对铁电液晶排列的影响.  , 2010, 59(9): 6261-6265. doi: 10.7498/aps.59.6261
    [11] 孙其诚, 金峰, 王光谦, 张国华. 二维颗粒体系单轴压缩形成的力链结构.  , 2010, 59(1): 30-37. doi: 10.7498/aps.59.30
    [12] 张兴刚, 隆正文, 胡林. 颗粒体系中力分布的标量力网系综模型.  , 2009, 58(1): 90-96. doi: 10.7498/aps.58.90
    [13] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质.  , 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [14] 刘军民, 张进修. 关于热诱导一级相变过程的非平衡态理论.  , 1997, 46(2): 345-352. doi: 10.7498/aps.46.345
    [15] 张世昌, 刘庆想, 徐勇. 反向导引场自由电子激光器中平衡态电子的类熵量.  , 1994, 43(2): 225-232. doi: 10.7498/aps.43.225
    [16] 王昌标. 自由电子激光中平衡态螺旋轨道的稳定性问题.  , 1992, 41(7): 1092-1096. doi: 10.7498/aps.41.1092
    [17] 陈式刚, 陈肖兰, 王友琴. 强准粒子注入下具有时间周期结构的超导非平衡态.  , 1984, 33(2): 281-284. doi: 10.7498/aps.33.281
    [18] 周光召, 苏肇冰, 郝柏林, 于渌. 非平衡统计场论与临界动力学(Ⅰ)——广义朗之万方程.  , 1980, 29(8): 961-968. doi: 10.7498/aps.29.961
    [19] 冯克安. 非平衡态相变的两例——光学参量振荡和激光.  , 1978, 27(3): 322-330. doi: 10.7498/aps.27.322
    [20] 周光召. 双力程核子力的讨论.  , 1955, 11(4): 299-316. doi: 10.7498/aps.11.299
计量
  • 文章访问数:  7338
  • PDF下载量:  296
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-14
  • 修回日期:  2017-06-13
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map