-
The glass is in a non-equilibrium state in nature, and relaxation might occur towards the equilibrium state at a certain temperature. When heating a quenched glass, relaxation can be resolved as temperature approaches to the glass transition, and further heating leads to enthalpy recovery as the system turns into an equilibrium supercooled liquid. The released energy involving the relaxation relative to the original quenched state is, in magnitude, identical to the gained energy in enthalpy recovery, showing a memory effect. In this paper, we discuss the enthalpy behaviors involved in a cooling and reheating cycle around the glass transition in various glass forming systems such as oxides, metal alloys, and small molecular systems. The cooling and heating rates are fixed to be -/+ 20 K/min with the related cooling and heating heat capacity curves being determined. It is found that the relaxation enthalpy involved in the cooling/heating cycles is closely related to the enthalpy of fusion for the glass forming materials, and the basically linear correlation implies the similarity between the glass transition and melting behaviors with regard to the atomic rearrangements involved in the relaxation and solidification processes. The determining of the cooling and heating heat capacity curves also helps establish the enthalpy relaxation/recovery spectra of various glasses, and the symmetry of the spectrum is associated with the fragility of glass-forming material. For the material of low or medium fragilities, the symmetry of the enthalpy relaxation spectrum is observed to be somehow dependent on the fragility, while for the high fragility glass, the symmetry keeps almost constant. The dependence of fragility on the glass transition thermodynamics is also discussed, and low melting entropy and high fragility are shown to reduce effectively the liquid-crystal Gibbs free energy difference. Using the correlation between the relaxation enthalpy and kinetic fragility reported in our previous studies, the glass transition thermodynamics for the case of the most fragile glass with m= 175 is evaluated, especially compared with the second phase transition of thermodynamics. The results provide a new understanding of the thermodynamics of the relaxation in glassy material and the glass transition.
-
Keywords:
- glass transition /
- relaxation /
- fragility
[1] Angell C A 1995 Science 267 1924
[2] Richert R 2011 Annu. Rev. Phys. Chem. 62 65
[3] Huang D, Simon S L, McKenna G B 2005 J. Chem. Phys. 122 084907
[4] Dyre J C 2006 Rev. Mod. Phys. 78 953
[5] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200
[6] Debenedetti P G, Stillinger F H 2001 Nature 410 259
[7] Schönhals A, Kremer F, Schlosser E 1991 Phys. Rev. Lett. 67 999
[8] Rivera A, León C, Varsamis C P E, Chryssikos G D, Ngai K L, Roland C M, Buckley L J 2002 Phys. Rev. Lett. 88 125902
[9] Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001
[10] Capaccioli S, Paluch M, Prevosto D, Wang L M, Ngai K L 2012 J. Phys. Chem. Lett. 3 735
[11] Paluch M, Roland C M, Pawlus S, Ziolo J, Ngai K L 2003 Phys. Rev. Lett. 91 115701
[12] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer Science & Business Media) p306
[13] Richert R 2010 Phys. Rev. Lett. 104 085702
[14] Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372
[15] Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E 1997 Europhys. Lett. 40 649
[16] Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901
[17] Chen K, Ellenbroek W G, Zhang Z, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501
[18] Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386
[19] Hodge I M 1994 J. Non-Cryst. Solids 169 211
[20] Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201
[21] Hodge I M 1996 J. Non-Cryst. Solids 202 164
[22] Angell C A 1991 J. Non-Cryst. Solids 131 13
[23] Kauzmann W 1948 Chem. Rev. 43 219
[24] Sakka S, Mackenzie J D 1971 J. Non-Cryst. Solids 6 145
[25] Wunderlich B 1960 J. Phys. Chem. 64 1052
[26] Adam G, Gibbs J H 1965 J. Chem. Phys 43 139
[27] Bestul A B, Chang S S 1964 J. Chem. Phys. 40 3731
[28] Gutzow I, Hench D K L L, Freiman S W 1971 Advances in Nucleation and Crysallization in Glasses (American Ceramic Society) p116
[29] Gutzow I, Dobreva A 1991 J. Non-Cryst. Solids 129 266
[30] Simha R, Boyer R F 1962 J. Chem. Phys. 37 1003
[31] Angell C A, Sichina W 1976 Ann. N. Y. Acad. Sci. 279 53
[32] Angell C A 1985 J. Non-Cryst. Solids 73 1
[33] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505
[34] Wang L M, Richert R 2007 Phys. Rev. B 76 064201
[35] Qin Q, Mckenna G B 2006 J. Non-Cryst. Solids 352 2977
[36] Privalko V P 1980 J. Phys. Chem. 84 3307
[37] Chen Z M, Li Z J, Zhang Y Q, Liu R P, Tian Y J, Wang L M 2014 Eur. Phys. J. E Soft Matter 37 1
[38] Angell C A, Klein I S 2011 Nature Phys. 7 750
[39] Defay R, Bellemans A, Prigogine I 1966 Surface Tension and Adsorption (London: Longmans) p432
[40] Wang L M, Liu R, Wang W H 2008 J. Chem. Phys. 128 164503
[41] Rao C N R, Rao K J 1977 Phase Transitions in Solids (New York: McGraw-Hill) p115
[42] Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353
[43] McKenna G B 2007 J. Non-Cryst. Solids 353 3820
[44] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184
[45] Chen Z M, Zhao L R, Tu W K, Li Z J, Gao Y Q, Wang L M 2016 J. Non-Cryst. Solids 433 20
[46] Prigogine I, Defay R 1954 Chemical Thermodynamics (London: Longmans) p543
[47] Moynihan C T, Gupta P K 1978 J. Non-Cryst. Solids 29 143
[48] Gutzow I S, Mazurin O V, Schmelzer J W P, Todorova S V, Petroff B B, Priven A I 2011 Glasses and the Glass Transition (New Yorlk: John Wiley & Sons) p128
[49] Tool A Q 1946 J. Am. Ceram. Soc. 29 240
[50] Narayanaswamy O S 1971 J. Am. Ceram. Soc. 54 491
[51] Angell C A, Wang L M 2003 Biophys. Chem. 105 621
[52] Badrinarayanan P, Zheng W, Li Q, Simon S L 2007 J. Non-Cryst. Solids 353 2603
[53] Duvvuri K, Richert R 2002 J. Chem. Phys. 117 4414
[54] Angell C A 2008 MRS Bull. 33 544
[55] Molinero V, Sastry S, Angell C A 2006 Phys. Rev. Lett. 97 075701
[56] Echeverria I, Su P C, Simon S L, Plazek D J 1995 J. Polym. Sci. Part B: Polym. Phys. 33 2457
[57] Turnbull D 1969 Contemp. Phys. 10 473
[58] Naumis G G 2006 Phys. Rev. B 73 172202
[59] Naumis G G, Flores-Ruiz H M 2008 Phys. Rev. B 78 094203
[60] Kato H, Chen H S, Inoue A 2008 Scripta Mater. 58 1106
[61] Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902
[62] Wang W H, Wen P, Zhao D Q, Pan M X, Wang R J 2003 J. Mater. Res. 18 2747
[63] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]
[64] Deb S K, Wilding M, Somayazulu M, Mcmillan P F 2011 Nature 414 528
[65] Kechin V V 2001 Phys. Rev. B 65 052102
[66] Svenson M, Thirion L, Youngman R, Mauro J C, Bauchy M, Rzoska S J, Bockowski M, Smedskjaer M M 2016 Front Mater.: Glass Sci. 3 00014
[67] Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements under High Pressure (United States of America: CRC Press) pp172
[68] Voigtmann T 2008 Phys. Rev. Lett. 101 095701
[69] Drozd-Rzoska A 2005 Phys. Rev. E 72 041505
[70] Li P F, Gao P, Liu Y D, Wang L M 2017 J. Alloys Compd. 696 754
[71] Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508
[72] Turnbull D 1950 J. Appl. Phys. 21 1022
[73] Thompson C V, Spaepen F 1979 Acta Metall. 27 1855
[74] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671
[75] Inoue A, Takeuchi A 2002 Mater. Trans. 43 1892
[76] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171
[77] Angell C A, Smith D L 1982 J. Phys. Chem. 86 3845
[78] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901
[79] Fecht H J, Perepezko J H, Lee M C, Johnson W L 1990 J. Appl. Phys. 68 4494
[80] Busch R, Kim Y J, Johnson W L 1995 J. Appl. Phys. 77 4039
[81] Zaitsev A I, Zaitseva N E, Alekseeva Y P, Kuril'chenko E M, Dunaev S F 2003 Inorg. Mater. 39 816
[82] Tanaka H 2005 J. Non-Cryst. Solids 351 678
-
[1] Angell C A 1995 Science 267 1924
[2] Richert R 2011 Annu. Rev. Phys. Chem. 62 65
[3] Huang D, Simon S L, McKenna G B 2005 J. Chem. Phys. 122 084907
[4] Dyre J C 2006 Rev. Mod. Phys. 78 953
[5] Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200
[6] Debenedetti P G, Stillinger F H 2001 Nature 410 259
[7] Schönhals A, Kremer F, Schlosser E 1991 Phys. Rev. Lett. 67 999
[8] Rivera A, León C, Varsamis C P E, Chryssikos G D, Ngai K L, Roland C M, Buckley L J 2002 Phys. Rev. Lett. 88 125902
[9] Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001
[10] Capaccioli S, Paluch M, Prevosto D, Wang L M, Ngai K L 2012 J. Phys. Chem. Lett. 3 735
[11] Paluch M, Roland C M, Pawlus S, Ziolo J, Ngai K L 2003 Phys. Rev. Lett. 91 115701
[12] Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer Science & Business Media) p306
[13] Richert R 2010 Phys. Rev. Lett. 104 085702
[14] Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372
[15] Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E 1997 Europhys. Lett. 40 649
[16] Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901
[17] Chen K, Ellenbroek W G, Zhang Z, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501
[18] Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386
[19] Hodge I M 1994 J. Non-Cryst. Solids 169 211
[20] Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201
[21] Hodge I M 1996 J. Non-Cryst. Solids 202 164
[22] Angell C A 1991 J. Non-Cryst. Solids 131 13
[23] Kauzmann W 1948 Chem. Rev. 43 219
[24] Sakka S, Mackenzie J D 1971 J. Non-Cryst. Solids 6 145
[25] Wunderlich B 1960 J. Phys. Chem. 64 1052
[26] Adam G, Gibbs J H 1965 J. Chem. Phys 43 139
[27] Bestul A B, Chang S S 1964 J. Chem. Phys. 40 3731
[28] Gutzow I, Hench D K L L, Freiman S W 1971 Advances in Nucleation and Crysallization in Glasses (American Ceramic Society) p116
[29] Gutzow I, Dobreva A 1991 J. Non-Cryst. Solids 129 266
[30] Simha R, Boyer R F 1962 J. Chem. Phys. 37 1003
[31] Angell C A, Sichina W 1976 Ann. N. Y. Acad. Sci. 279 53
[32] Angell C A 1985 J. Non-Cryst. Solids 73 1
[33] Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505
[34] Wang L M, Richert R 2007 Phys. Rev. B 76 064201
[35] Qin Q, Mckenna G B 2006 J. Non-Cryst. Solids 352 2977
[36] Privalko V P 1980 J. Phys. Chem. 84 3307
[37] Chen Z M, Li Z J, Zhang Y Q, Liu R P, Tian Y J, Wang L M 2014 Eur. Phys. J. E Soft Matter 37 1
[38] Angell C A, Klein I S 2011 Nature Phys. 7 750
[39] Defay R, Bellemans A, Prigogine I 1966 Surface Tension and Adsorption (London: Longmans) p432
[40] Wang L M, Liu R, Wang W H 2008 J. Chem. Phys. 128 164503
[41] Rao C N R, Rao K J 1977 Phase Transitions in Solids (New York: McGraw-Hill) p115
[42] Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353
[43] McKenna G B 2007 J. Non-Cryst. Solids 353 3820
[44] Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184
[45] Chen Z M, Zhao L R, Tu W K, Li Z J, Gao Y Q, Wang L M 2016 J. Non-Cryst. Solids 433 20
[46] Prigogine I, Defay R 1954 Chemical Thermodynamics (London: Longmans) p543
[47] Moynihan C T, Gupta P K 1978 J. Non-Cryst. Solids 29 143
[48] Gutzow I S, Mazurin O V, Schmelzer J W P, Todorova S V, Petroff B B, Priven A I 2011 Glasses and the Glass Transition (New Yorlk: John Wiley & Sons) p128
[49] Tool A Q 1946 J. Am. Ceram. Soc. 29 240
[50] Narayanaswamy O S 1971 J. Am. Ceram. Soc. 54 491
[51] Angell C A, Wang L M 2003 Biophys. Chem. 105 621
[52] Badrinarayanan P, Zheng W, Li Q, Simon S L 2007 J. Non-Cryst. Solids 353 2603
[53] Duvvuri K, Richert R 2002 J. Chem. Phys. 117 4414
[54] Angell C A 2008 MRS Bull. 33 544
[55] Molinero V, Sastry S, Angell C A 2006 Phys. Rev. Lett. 97 075701
[56] Echeverria I, Su P C, Simon S L, Plazek D J 1995 J. Polym. Sci. Part B: Polym. Phys. 33 2457
[57] Turnbull D 1969 Contemp. Phys. 10 473
[58] Naumis G G 2006 Phys. Rev. B 73 172202
[59] Naumis G G, Flores-Ruiz H M 2008 Phys. Rev. B 78 094203
[60] Kato H, Chen H S, Inoue A 2008 Scripta Mater. 58 1106
[61] Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902
[62] Wang W H, Wen P, Zhao D Q, Pan M X, Wang R J 2003 J. Mater. Res. 18 2747
[63] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]
[64] Deb S K, Wilding M, Somayazulu M, Mcmillan P F 2011 Nature 414 528
[65] Kechin V V 2001 Phys. Rev. B 65 052102
[66] Svenson M, Thirion L, Youngman R, Mauro J C, Bauchy M, Rzoska S J, Bockowski M, Smedskjaer M M 2016 Front Mater.: Glass Sci. 3 00014
[67] Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements under High Pressure (United States of America: CRC Press) pp172
[68] Voigtmann T 2008 Phys. Rev. Lett. 101 095701
[69] Drozd-Rzoska A 2005 Phys. Rev. E 72 041505
[70] Li P F, Gao P, Liu Y D, Wang L M 2017 J. Alloys Compd. 696 754
[71] Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508
[72] Turnbull D 1950 J. Appl. Phys. 21 1022
[73] Thompson C V, Spaepen F 1979 Acta Metall. 27 1855
[74] Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671
[75] Inoue A, Takeuchi A 2002 Mater. Trans. 43 1892
[76] Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171
[77] Angell C A, Smith D L 1982 J. Phys. Chem. 86 3845
[78] Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901
[79] Fecht H J, Perepezko J H, Lee M C, Johnson W L 1990 J. Appl. Phys. 68 4494
[80] Busch R, Kim Y J, Johnson W L 1995 J. Appl. Phys. 77 4039
[81] Zaitsev A I, Zaitseva N E, Alekseeva Y P, Kuril'chenko E M, Dunaev S F 2003 Inorg. Mater. 39 816
[82] Tanaka H 2005 J. Non-Cryst. Solids 351 678
计量
- 文章访问数: 6005
- PDF下载量: 634
- 被引次数: 0