搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶材料玻璃转变过程中记忆效应的热力学

金肖 王利民

引用本文:
Citation:

非晶材料玻璃转变过程中记忆效应的热力学

金肖, 王利民

Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition

Jin Xiao, Wang Li-Min
PDF
导出引用
  • 低温下处于非平衡态的非晶材料升温到玻璃转变以上,要先后发生弛豫和回复最终达到平衡过冷液态,其中弛豫过程中释放的能量在回复过程中以等量的方式获取,表现出明显记忆行为.本文基于氧化物、金属与小分子等多种非晶形成体系,全面探讨了在围绕玻璃转变的一个冷却加热循环过程中的焓弛豫特征,建立了弛豫谱,发现弛豫焓在数值上与熔化焓密切相关.基于弛豫焓与非晶材料动力学Fragility之间的关联,展示了非晶体系在动力学极限(m=175)条件下的玻璃转变热力学基本特征,与热力学二级相变进行了对比.研究深化了对非晶弛豫与玻璃转变热力学的理解.
    The glass is in a non-equilibrium state in nature, and relaxation might occur towards the equilibrium state at a certain temperature. When heating a quenched glass, relaxation can be resolved as temperature approaches to the glass transition, and further heating leads to enthalpy recovery as the system turns into an equilibrium supercooled liquid. The released energy involving the relaxation relative to the original quenched state is, in magnitude, identical to the gained energy in enthalpy recovery, showing a memory effect. In this paper, we discuss the enthalpy behaviors involved in a cooling and reheating cycle around the glass transition in various glass forming systems such as oxides, metal alloys, and small molecular systems. The cooling and heating rates are fixed to be -/+ 20 K/min with the related cooling and heating heat capacity curves being determined. It is found that the relaxation enthalpy involved in the cooling/heating cycles is closely related to the enthalpy of fusion for the glass forming materials, and the basically linear correlation implies the similarity between the glass transition and melting behaviors with regard to the atomic rearrangements involved in the relaxation and solidification processes. The determining of the cooling and heating heat capacity curves also helps establish the enthalpy relaxation/recovery spectra of various glasses, and the symmetry of the spectrum is associated with the fragility of glass-forming material. For the material of low or medium fragilities, the symmetry of the enthalpy relaxation spectrum is observed to be somehow dependent on the fragility, while for the high fragility glass, the symmetry keeps almost constant. The dependence of fragility on the glass transition thermodynamics is also discussed, and low melting entropy and high fragility are shown to reduce effectively the liquid-crystal Gibbs free energy difference. Using the correlation between the relaxation enthalpy and kinetic fragility reported in our previous studies, the glass transition thermodynamics for the case of the most fragile glass with m= 175 is evaluated, especially compared with the second phase transition of thermodynamics. The results provide a new understanding of the thermodynamics of the relaxation in glassy material and the glass transition.
      通信作者: 王利民, limin_wang@ysu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB856805)、国家自然科学基金(批准号:11474247)和河北省自然科学基金(批准号:A2014203260)资助的课题.
      Corresponding author: Wang Li-Min, limin_wang@ysu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856805), the National Natural Science Foundation of China (Grant No. 11474247), and the Natural Science Foundation of Hebei Province, China (Grant No. A2014203260).
    [1]

    Angell C A 1995 Science 267 1924

    [2]

    Richert R 2011 Annu. Rev. Phys. Chem. 62 65

    [3]

    Huang D, Simon S L, McKenna G B 2005 J. Chem. Phys. 122 084907

    [4]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [5]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [6]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [7]

    Schönhals A, Kremer F, Schlosser E 1991 Phys. Rev. Lett. 67 999

    [8]

    Rivera A, León C, Varsamis C P E, Chryssikos G D, Ngai K L, Roland C M, Buckley L J 2002 Phys. Rev. Lett. 88 125902

    [9]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001

    [10]

    Capaccioli S, Paluch M, Prevosto D, Wang L M, Ngai K L 2012 J. Phys. Chem. Lett. 3 735

    [11]

    Paluch M, Roland C M, Pawlus S, Ziolo J, Ngai K L 2003 Phys. Rev. Lett. 91 115701

    [12]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer Science & Business Media) p306

    [13]

    Richert R 2010 Phys. Rev. Lett. 104 085702

    [14]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [15]

    Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E 1997 Europhys. Lett. 40 649

    [16]

    Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901

    [17]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [18]

    Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386

    [19]

    Hodge I M 1994 J. Non-Cryst. Solids 169 211

    [20]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [21]

    Hodge I M 1996 J. Non-Cryst. Solids 202 164

    [22]

    Angell C A 1991 J. Non-Cryst. Solids 131 13

    [23]

    Kauzmann W 1948 Chem. Rev. 43 219

    [24]

    Sakka S, Mackenzie J D 1971 J. Non-Cryst. Solids 6 145

    [25]

    Wunderlich B 1960 J. Phys. Chem. 64 1052

    [26]

    Adam G, Gibbs J H 1965 J. Chem. Phys 43 139

    [27]

    Bestul A B, Chang S S 1964 J. Chem. Phys. 40 3731

    [28]

    Gutzow I, Hench D K L L, Freiman S W 1971 Advances in Nucleation and Crysallization in Glasses (American Ceramic Society) p116

    [29]

    Gutzow I, Dobreva A 1991 J. Non-Cryst. Solids 129 266

    [30]

    Simha R, Boyer R F 1962 J. Chem. Phys. 37 1003

    [31]

    Angell C A, Sichina W 1976 Ann. N. Y. Acad. Sci. 279 53

    [32]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [33]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505

    [34]

    Wang L M, Richert R 2007 Phys. Rev. B 76 064201

    [35]

    Qin Q, Mckenna G B 2006 J. Non-Cryst. Solids 352 2977

    [36]

    Privalko V P 1980 J. Phys. Chem. 84 3307

    [37]

    Chen Z M, Li Z J, Zhang Y Q, Liu R P, Tian Y J, Wang L M 2014 Eur. Phys. J. E Soft Matter 37 1

    [38]

    Angell C A, Klein I S 2011 Nature Phys. 7 750

    [39]

    Defay R, Bellemans A, Prigogine I 1966 Surface Tension and Adsorption (London: Longmans) p432

    [40]

    Wang L M, Liu R, Wang W H 2008 J. Chem. Phys. 128 164503

    [41]

    Rao C N R, Rao K J 1977 Phase Transitions in Solids (New York: McGraw-Hill) p115

    [42]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353

    [43]

    McKenna G B 2007 J. Non-Cryst. Solids 353 3820

    [44]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184

    [45]

    Chen Z M, Zhao L R, Tu W K, Li Z J, Gao Y Q, Wang L M 2016 J. Non-Cryst. Solids 433 20

    [46]

    Prigogine I, Defay R 1954 Chemical Thermodynamics (London: Longmans) p543

    [47]

    Moynihan C T, Gupta P K 1978 J. Non-Cryst. Solids 29 143

    [48]

    Gutzow I S, Mazurin O V, Schmelzer J W P, Todorova S V, Petroff B B, Priven A I 2011 Glasses and the Glass Transition (New Yorlk: John Wiley & Sons) p128

    [49]

    Tool A Q 1946 J. Am. Ceram. Soc. 29 240

    [50]

    Narayanaswamy O S 1971 J. Am. Ceram. Soc. 54 491

    [51]

    Angell C A, Wang L M 2003 Biophys. Chem. 105 621

    [52]

    Badrinarayanan P, Zheng W, Li Q, Simon S L 2007 J. Non-Cryst. Solids 353 2603

    [53]

    Duvvuri K, Richert R 2002 J. Chem. Phys. 117 4414

    [54]

    Angell C A 2008 MRS Bull. 33 544

    [55]

    Molinero V, Sastry S, Angell C A 2006 Phys. Rev. Lett. 97 075701

    [56]

    Echeverria I, Su P C, Simon S L, Plazek D J 1995 J. Polym. Sci. Part B: Polym. Phys. 33 2457

    [57]

    Turnbull D 1969 Contemp. Phys. 10 473

    [58]

    Naumis G G 2006 Phys. Rev. B 73 172202

    [59]

    Naumis G G, Flores-Ruiz H M 2008 Phys. Rev. B 78 094203

    [60]

    Kato H, Chen H S, Inoue A 2008 Scripta Mater. 58 1106

    [61]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902

    [62]

    Wang W H, Wen P, Zhao D Q, Pan M X, Wang R J 2003 J. Mater. Res. 18 2747

    [63]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [64]

    Deb S K, Wilding M, Somayazulu M, Mcmillan P F 2011 Nature 414 528

    [65]

    Kechin V V 2001 Phys. Rev. B 65 052102

    [66]

    Svenson M, Thirion L, Youngman R, Mauro J C, Bauchy M, Rzoska S J, Bockowski M, Smedskjaer M M 2016 Front Mater.: Glass Sci. 3 00014

    [67]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements under High Pressure (United States of America: CRC Press) pp172

    [68]

    Voigtmann T 2008 Phys. Rev. Lett. 101 095701

    [69]

    Drozd-Rzoska A 2005 Phys. Rev. E 72 041505

    [70]

    Li P F, Gao P, Liu Y D, Wang L M 2017 J. Alloys Compd. 696 754

    [71]

    Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508

    [72]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [73]

    Thompson C V, Spaepen F 1979 Acta Metall. 27 1855

    [74]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671

    [75]

    Inoue A, Takeuchi A 2002 Mater. Trans. 43 1892

    [76]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171

    [77]

    Angell C A, Smith D L 1982 J. Phys. Chem. 86 3845

    [78]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [79]

    Fecht H J, Perepezko J H, Lee M C, Johnson W L 1990 J. Appl. Phys. 68 4494

    [80]

    Busch R, Kim Y J, Johnson W L 1995 J. Appl. Phys. 77 4039

    [81]

    Zaitsev A I, Zaitseva N E, Alekseeva Y P, Kuril'chenko E M, Dunaev S F 2003 Inorg. Mater. 39 816

    [82]

    Tanaka H 2005 J. Non-Cryst. Solids 351 678

  • [1]

    Angell C A 1995 Science 267 1924

    [2]

    Richert R 2011 Annu. Rev. Phys. Chem. 62 65

    [3]

    Huang D, Simon S L, McKenna G B 2005 J. Chem. Phys. 122 084907

    [4]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [5]

    Ediger M D, Angell C A, Nagel S R 1996 J. Phys. Chem. 100 13200

    [6]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [7]

    Schönhals A, Kremer F, Schlosser E 1991 Phys. Rev. Lett. 67 999

    [8]

    Rivera A, León C, Varsamis C P E, Chryssikos G D, Ngai K L, Roland C M, Buckley L J 2002 Phys. Rev. Lett. 88 125902

    [9]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001

    [10]

    Capaccioli S, Paluch M, Prevosto D, Wang L M, Ngai K L 2012 J. Phys. Chem. Lett. 3 735

    [11]

    Paluch M, Roland C M, Pawlus S, Ziolo J, Ngai K L 2003 Phys. Rev. Lett. 91 115701

    [12]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer Science & Business Media) p306

    [13]

    Richert R 2010 Phys. Rev. Lett. 104 085702

    [14]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [15]

    Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E 1997 Europhys. Lett. 40 649

    [16]

    Luo P, Li Y Z, Bai H Y, Wen P, Wang W H 2016 Phys. Rev. Lett. 116 175901

    [17]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T N, Yunker P J, Henkes S, Brito C, Dauchot O, Saarloos W V, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [18]

    Brand R, Lunkenheimer P, Loidl A 2002 J. Chem. Phys. 116 10386

    [19]

    Hodge I M 1994 J. Non-Cryst. Solids 169 211

    [20]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [21]

    Hodge I M 1996 J. Non-Cryst. Solids 202 164

    [22]

    Angell C A 1991 J. Non-Cryst. Solids 131 13

    [23]

    Kauzmann W 1948 Chem. Rev. 43 219

    [24]

    Sakka S, Mackenzie J D 1971 J. Non-Cryst. Solids 6 145

    [25]

    Wunderlich B 1960 J. Phys. Chem. 64 1052

    [26]

    Adam G, Gibbs J H 1965 J. Chem. Phys 43 139

    [27]

    Bestul A B, Chang S S 1964 J. Chem. Phys. 40 3731

    [28]

    Gutzow I, Hench D K L L, Freiman S W 1971 Advances in Nucleation and Crysallization in Glasses (American Ceramic Society) p116

    [29]

    Gutzow I, Dobreva A 1991 J. Non-Cryst. Solids 129 266

    [30]

    Simha R, Boyer R F 1962 J. Chem. Phys. 37 1003

    [31]

    Angell C A, Sichina W 1976 Ann. N. Y. Acad. Sci. 279 53

    [32]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [33]

    Wang L M, Angell C A, Richert R 2006 J. Chem. Phys. 125 074505

    [34]

    Wang L M, Richert R 2007 Phys. Rev. B 76 064201

    [35]

    Qin Q, Mckenna G B 2006 J. Non-Cryst. Solids 352 2977

    [36]

    Privalko V P 1980 J. Phys. Chem. 84 3307

    [37]

    Chen Z M, Li Z J, Zhang Y Q, Liu R P, Tian Y J, Wang L M 2014 Eur. Phys. J. E Soft Matter 37 1

    [38]

    Angell C A, Klein I S 2011 Nature Phys. 7 750

    [39]

    Defay R, Bellemans A, Prigogine I 1966 Surface Tension and Adsorption (London: Longmans) p432

    [40]

    Wang L M, Liu R, Wang W H 2008 J. Chem. Phys. 128 164503

    [41]

    Rao C N R, Rao K J 1977 Phase Transitions in Solids (New York: McGraw-Hill) p115

    [42]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353

    [43]

    McKenna G B 2007 J. Non-Cryst. Solids 353 3820

    [44]

    Wang L M, Velikov V, Angell C A 2002 J. Chem. Phys. 117 10184

    [45]

    Chen Z M, Zhao L R, Tu W K, Li Z J, Gao Y Q, Wang L M 2016 J. Non-Cryst. Solids 433 20

    [46]

    Prigogine I, Defay R 1954 Chemical Thermodynamics (London: Longmans) p543

    [47]

    Moynihan C T, Gupta P K 1978 J. Non-Cryst. Solids 29 143

    [48]

    Gutzow I S, Mazurin O V, Schmelzer J W P, Todorova S V, Petroff B B, Priven A I 2011 Glasses and the Glass Transition (New Yorlk: John Wiley & Sons) p128

    [49]

    Tool A Q 1946 J. Am. Ceram. Soc. 29 240

    [50]

    Narayanaswamy O S 1971 J. Am. Ceram. Soc. 54 491

    [51]

    Angell C A, Wang L M 2003 Biophys. Chem. 105 621

    [52]

    Badrinarayanan P, Zheng W, Li Q, Simon S L 2007 J. Non-Cryst. Solids 353 2603

    [53]

    Duvvuri K, Richert R 2002 J. Chem. Phys. 117 4414

    [54]

    Angell C A 2008 MRS Bull. 33 544

    [55]

    Molinero V, Sastry S, Angell C A 2006 Phys. Rev. Lett. 97 075701

    [56]

    Echeverria I, Su P C, Simon S L, Plazek D J 1995 J. Polym. Sci. Part B: Polym. Phys. 33 2457

    [57]

    Turnbull D 1969 Contemp. Phys. 10 473

    [58]

    Naumis G G 2006 Phys. Rev. B 73 172202

    [59]

    Naumis G G, Flores-Ruiz H M 2008 Phys. Rev. B 78 094203

    [60]

    Kato H, Chen H S, Inoue A 2008 Scripta Mater. 58 1106

    [61]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902

    [62]

    Wang W H, Wen P, Zhao D Q, Pan M X, Wang R J 2003 J. Mater. Res. 18 2747

    [63]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [64]

    Deb S K, Wilding M, Somayazulu M, Mcmillan P F 2011 Nature 414 528

    [65]

    Kechin V V 2001 Phys. Rev. B 65 052102

    [66]

    Svenson M, Thirion L, Youngman R, Mauro J C, Bauchy M, Rzoska S J, Bockowski M, Smedskjaer M M 2016 Front Mater.: Glass Sci. 3 00014

    [67]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements under High Pressure (United States of America: CRC Press) pp172

    [68]

    Voigtmann T 2008 Phys. Rev. Lett. 101 095701

    [69]

    Drozd-Rzoska A 2005 Phys. Rev. E 72 041505

    [70]

    Li P F, Gao P, Liu Y D, Wang L M 2017 J. Alloys Compd. 696 754

    [71]

    Shadowspeaker L, Busch R 2004 Appl. Phys. Lett. 85 2508

    [72]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [73]

    Thompson C V, Spaepen F 1979 Acta Metall. 27 1855

    [74]

    Mondal K, Chatterjee U K, Murty B S 2003 Appl. Phys. Lett. 83 671

    [75]

    Inoue A, Takeuchi A 2002 Mater. Trans. 43 1892

    [76]

    Angell C A 1997 J. Res. Natl. Inst. Stand. Technol. 102 171

    [77]

    Angell C A, Smith D L 1982 J. Phys. Chem. 86 3845

    [78]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [79]

    Fecht H J, Perepezko J H, Lee M C, Johnson W L 1990 J. Appl. Phys. 68 4494

    [80]

    Busch R, Kim Y J, Johnson W L 1995 J. Appl. Phys. 77 4039

    [81]

    Zaitsev A I, Zaitseva N E, Alekseeva Y P, Kuril'chenko E M, Dunaev S F 2003 Inorg. Mater. 39 816

    [82]

    Tanaka H 2005 J. Non-Cryst. Solids 351 678

  • [1] 许思维, 王训四, 沈祥. 元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响.  , 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [2] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [3] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象.  , 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [4] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真.  , 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [5] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [6] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [7] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性.  , 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [8] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究.  , 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [9] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性.  , 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [10] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究.  , 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [11] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫.  , 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [12] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟.  , 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [13] 王秀英, 陈 莹, 张宁玉, 赵丽萍, 庞岩涛, 王文魁. 压力对Zr46.75Ti8.25Cu7.5Ni10Be27.5大块非晶合金玻璃转变和晶化动力学的影响.  , 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [14] 吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震刚. 在玻璃转变温度及其以上温区聚苯乙烯/聚氧化乙烯共混物的动力学弛豫行为.  , 2007, 56(8): 4798-4803. doi: 10.7498/aps.56.4798
    [15] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算.  , 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [16] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算.  , 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [17] 陈志浩, 刘兰俊, 张 博, 席 赟, 王 强, 祖方遒. Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变的动力学性质.  , 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [18] 李 正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华. 永磁性Pr55Al12Fe30Cu3 大块金属玻璃.  , 2003, 52(3): 652-655. doi: 10.7498/aps.52.652
    [19] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响.  , 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] 许峰, 黄永仁. 射频场照射下同核体系的弛豫.  , 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
计量
  • 文章访问数:  6005
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 修回日期:  2017-06-28
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map