搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲激光场中间二氯苯的激发态动力学

沈环 胡春龙 邓绪兰

引用本文:
Citation:

超短脉冲激光场中间二氯苯的激发态动力学

沈环, 胡春龙, 邓绪兰

Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses

Shen Huan, Hu Chun-Long, Deng Xu-Lan
PDF
导出引用
  • 利用飞秒时间分辨的飞行时间质谱技术研究了间二氯苯的激发态动力学.间二氯苯分子吸收一个200 nm或者267 nm的光子被抽运到激发态,随后再吸收多个800 nm的光子被电离.实验获得了电离产生的离子质谱信号及其随抽运探测激光延迟时间的变化曲线.在200 nm时,分子被抽运到激发态(,*),可观察到三个相互竞争的解离通道的寿命:内转换到排斥态(n,*)或者(,*)并发生快速解离,其寿命约(0.150.01)ps;内转换到基态的高振动态,能量在基态热振动态间弛豫的寿命约为(4.940.08)ps;系间窜越到相邻的三重态从而发生预解离过程,其寿命约为(110.094.33)ps.在267 nm时,分子被抽运到第一激发态的低振动态,可观察到一个长寿命(约(1.060.05)ns)的系间窜越过程.除此之外,在碎片离子信号中还观察到了激发态与基态的高振动态之间的内转换过程.
    The excited state dynamics of aromatic hydrocarbon has attracted a great deal of attention due to its important role in photophysics and atmosphere chemistry. With the benefit of ultra-short laser pulses, the ultrafast phenomenon can be studied in a time resolved way. In the present work, m-dichlorobenzene, a typical model of aromatic hydrocarbon, is investigated by the femtosecond time resolved time-of-flight mass spectroscopy. In order to reveal its excited state dynamics, m-dichlorobenzene is pumped to the excited state after absorbing one 200/267 nm photon, and then ionized by absorbing 800 nm photons. Time resolved mass spectra are recorded with time of flight. At 200 nm, m-dichlorobenzene is excited to a (, *) state. Three decay components are observed in the transient profiles of m-dichlorobenzene ions, which correspond to three competition channels in the excited states. The first channel is an ultrafast dissociation process via a repulsive state with (n, *) or (, *) character, and the lifetime is (0.150.01) ps. The second channel is an internal conversion process from the populated excited state to the hot ground state, and the lifetime of the redistribution of the internal vibration in the hot ground state is (4.940.08) ps. The third channel is an intersystem crossing process to the triplet state, and the lifetime is (110.094.33) ps. Moreover, the transient profiles of C6H4Cl+/C6H4+ display similar decay tendencies to the transient profile of parent ion, except that longer lifetime constants ((127.3829.29) ps for C6H4Cl+, and (123.7637.12) ps for C6H4+, respectively) are observed. It is likely that the fragment ions result from the dissociative ionization of the parent molecule. At 267 nm, m-dichlorobenzene is excited to the first excited state with (n, *) character. Only C6H4Cl2+ and C6H4Cl+ are observed in the two-color mass spectrum. A slow decay component (~(1.060.05) ns) is obtained for both the parent ion and the fragment ion. It is attributed to an intersystem crossing process from the first excited state S1 to the triplet state T1. Furthermore, the transient profile of C6H4Cl+ displays other decay components, i.e., (2.480.09) ps, in addition to the slow decay component. This fast decay process can be attributed to an internal conversion process from the populated excited states to the hot ground states. The present study provides a more in-depth understanding of the ultrafast excited state dynamics of m-dichlorobenzene.
      通信作者: 沈环, shenhuan@mail.hzau.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21403080)资助的课题.
      Corresponding author: Shen Huan, shenhuan@mail.hzau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.21403080).
    [1]

    Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42

    [2]

    Zewail A H 1988 Science 242 1645

    [3]

    Suzuki T 2014 Molecules 19 2410

    [4]

    Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44

    [5]

    Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168

    [6]

    Stolow A 2014 Nat. Chem. 6 759

    [7]

    Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785

    [8]

    Stair R 1949 J. Res. NBS 42 587

    [9]

    Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835

    [10]

    Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344

    [11]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027

    [12]

    Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538

    [13]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [14]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [15]

    Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655

    [16]

    Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84

    [17]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299

    [18]

    Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]

    [19]

    Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]

    [20]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [21]

    Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]

    [22]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [23]

    Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55

    [24]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [25]

    Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563

    [26]

    Brown P 1970 Org. Mass Spectrom. 3 639

    [27]

    Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601

    [28]

    Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423

    [29]

    Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309

  • [1]

    Bowman R M, Dantus M, Zewail A H 2013 Chem. Phys. Lett. 589 42

    [2]

    Zewail A H 1988 Science 242 1645

    [3]

    Suzuki T 2014 Molecules 19 2410

    [4]

    Liu Z M, Hu C L, Li S, Xu Y Q, Wang Y M, Zhang B 2015 Chem. Phys. Lett. 619 44

    [5]

    Yu H, Sanchez-Rodriguez J A, Pollum M, Crespo-Hernandez C E, Mai S, Marquetand P, Gonzalez L, Ullrich S 2016 Phys. Chem. Chem. Phys. 18 20168

    [6]

    Stolow A 2014 Nat. Chem. 6 759

    [7]

    Corrales M, Gonzalez-Vazquez J, Villanueva G B, Banares L 2014 Nat. Chem. 6 785

    [8]

    Stair R 1949 J. Res. NBS 42 587

    [9]

    Ichimura T, Mori Y, Shinohara H, Nishi N 1997 J. Chem. Phys. 107 835

    [10]

    Lin M F, Dyakov Y A, Lin S H, Lee Y T, Ni C K 2005 J. Phys. Chem. 109 8344

    [11]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2002 Phys. Chem. Chem. Phys. 4 6027

    [12]

    Youn Y Y, Kwon C H, Choe J C, Kim M S 2002 J. Chem. Phys. 117 2538

    [13]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [14]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [15]

    Verhart N R, Navarro P, Faez S, Orrit M 2016 Phys. Chem. Chem. Phys. 18 17655

    [16]

    Potts A W, Holland D M P, Powis I, Karlsson L, Trofimov A B, Bodzuk I L 2013 Chem. Phys. 415 84

    [17]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 Chem. Phys. Chem. 10 1299

    [18]

    Wang Y Q, Yuan L W, Wang L, He G Z, Zhang Z G, Wang Q Y 2004 Chem. J. Chin. Univ. 25 1517 (in Chinese) [王艳秋, 袁丽威, 王利, 何国钟, 张志刚, 王清月 2004 高等学校化学学报 25 1517]

    [19]

    Yuan L W, Wang Y Q, Wang L, Bai J L, He G Z 2004 Sci. China Ser. B: Chem. 34 121 (in Chinese) [袁丽威, 王艳秋, 王利, 白吉玲, 何国钟 2004 中国科学B辑 化学 34 121]

    [20]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [21]

    Li X Y, Wang L, Wang Y Q, Song Z, Liu B K 2015 Acta Phys.-Chim. Sin. 31 1655 (in Chinese) [李晓营, 王利, 王艳秋, 宋哲, 刘本康 2015 物理化学学报 31 1655]

    [22]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [23]

    Han K L, He G Z 2007 J. Photochem. Photobiol. C: Photochem. Rev. 8 55

    [24]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [25]

    Olesik S, Baer T, Morrow J C 1986 J. Phys. Chem. 90 3563

    [26]

    Brown P 1970 Org. Mass Spectrom. 3 639

    [27]

    Roeterdink W G, Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601

    [28]

    Torres I, Martinez R, Castano F 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2423

    [29]

    Shimoda A, Hikida T, Mori Y 1979 J. Phys. Chem. 83 1309

  • [1] 梁玮宸, 王昱寒, 张熙, 王飞, 贾凤东, 薛平, 钟志萍. 铷离子-铷原子混合阱飞行时间谱的拟合和仿真模拟.  , 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [2] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究.  , 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [3] 郑镇法, 蒋翔, 褚维斌, 张丽丽, 郭宏礼, 赵传寓, 王亚南, 王傲雷, 郑奇靖, 赵瑾. 凝聚态体系中激发态载流子动力学研究.  , 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [4] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究.  , 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [5] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [6] 王艳梅, 唐颖, 张嵩, 龙金友, 张冰. 飞秒时间分辨质谱和光电子影像对分子激发态动力学的研究.  , 2018, 67(22): 227802. doi: 10.7498/aps.67.20181334
    [7] 刘燕文, 王小霞, 陆玉新, 田宏, 朱虹, 孟鸣凤, 赵丽, 谷兵. 用于电真空器件的金属材料蒸发特性.  , 2016, 65(6): 068502. doi: 10.7498/aps.65.068502
    [8] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学.  , 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [9] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [10] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究.  , 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [11] 王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌. 355 nm激光光电离甲醛飞行时间质谱的研究.  , 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [12] 王震遐, 竺建康, 任翠兰, 张伟. C59N和C19N晶体的合成.  , 2009, 58(7): 5046-5050. doi: 10.7498/aps.58.5046
    [13] 赵晓辉, 马 菲, 吴义室, 艾希成, 张建平. 飞秒时间分辨拉曼光谱用于研究β-胡萝卜素单重激发态内转换和振动弛豫过程.  , 2008, 57(1): 298-306. doi: 10.7498/aps.57.298
    [14] 曹 宁, 龙拥兵, 张治国, 高丽娟, 袁 洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭. 电子型掺杂高温超导体La2-xCexCuO4飞秒时间分辨动力学研究.  , 2008, 57(4): 2543-2547. doi: 10.7498/aps.57.2543
    [15] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究.  , 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [16] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布.  , 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [17] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子.  , 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] 夏柱红, 方黎, 郑海洋, 胡睿, 张玉莹, 孔祥和, 顾学军, 朱元, 张为俊, 鲍健, 熊鲁源. 气溶胶单粒子粒径的实时测量方法研究.  , 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [19] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱.  , 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
    [20] 李竹起, 阮景辉, 吴善令, 杨同华, 何敏, 陆挺, 成之绪, 陈桂英, 叶春堂. 用于凝聚态物质研究的旋转晶体中子飞行时间谱仪.  , 1980, 29(11): 1462-1470. doi: 10.7498/aps.29.1462
计量
  • 文章访问数:  5413
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map