搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含时驱动的Dicke模型的混沌特性

刘妮 梁九卿

引用本文:
Citation:

含时驱动的Dicke模型的混沌特性

刘妮, 梁九卿

Chaos propeties of the time-dependent driven Dicke model

Liu Ni, Liang Jiu-Qing
PDF
导出引用
  • 依据Dicke量子相变首次被观测的实验装置,我们通过调节抽运激光强度来实现原子-场集体耦合强度的单频非绝热调制,即实现含时驱动的Dicke模型.当驱动的耦合强度为零时,系统回退到标准的Dicke模型.从刻画的庞加莱截面图观测到:在临近相变点附近系统由经典规则轨道向混沌变化,超辐射区对应着相空间的完全混沌;当静态耦合和驱动耦合同时存在时,系统显示出丰富的混沌运动.通过调节振荡频率,系统可在正常相区间从经典规则轨道变到混沌再变到经典规则轨道.
    Now, many different approaches have been presented to study the different semi-classical models derived from the Dicke Hamiltonian, which reflect a fact that the quantum-mechanical spin possesses no direct classical analog. The Hartree-Fock-type approximation is one of the widely used approaches, with which we derive the Heisenberg equations of motion for the system and replace the operators in these equations with the corresponding expectation values. In the present paper, we investigate the role of quantum phase transition in determining the chaotic property of the time-dependent driven Dicke model. The semi-classical Hamiltonian is derived by evaluating the expectation value of the Dicke Hamiltonian in a state, which is a product state of photonic and atomic coherent states. Based on the inverse of the relations between the position-momentum representation and the Bosonic creation-annihilation operators, the Hamiltonian is rewritten in the position-momentum representation and it undergoes a spontaneous symmetry-breaking phase transition, which is directly analogous to the quantum phase transition of the quantum system. In order to depict the Poincaré sections, which are used to analyze the trajectories through the four-dimensional phase space, we give the equations of motion of system from the derivatives of the semi-classical Hamiltonian for a variety of different parameters and initial conditions. According to the Dicke quantum phase transition observed from the experimental setup , we study the effect of a monochromatic non-adiabatic modulation of the atom-field coupling in Dicke model (i.e., the driven Dicke model) on the system chaos by adjusting the pump laser intensity. The change from periodic track to chaotic figure reflects the quantum properties of the system, especially the quantum phase transition point, which is a key position for people to analyse the shift from periodic orbit to chaos. In an undriven case, the system reduces to the standard Dicke model. We discover from the Poincaré sections that the system undergoes a change from the classical periodic orbit to a number of chaotic trajectories and in the superradiant phase area, the whole phase space is completely chaotic. When the static and driving coupling both exist, the system shows rich chaotic motion. The ground state properties are mainly determined by the static coupling, while the orbit of the system is adjusted by the driving coupling. If the static coupling is greater than the critical coupling, the system displays completely chaotic images in the Poincaré sections, and the periodic orbits in the chaos can also be adjusted by the strong driving coupling. While the static coupling is less than the critical coupling, the system can also show the chaotic images by adjusting the driving coupling strength and oscillation frequency. Moreover, by tuning the oscillation frequency, the Poincaré sections may change from the classical orbits to the chaos, and back to the classical orbits in the normal phase of the system.
      通信作者: 刘妮, 317446484@qq.com
    • 基金项目: 国家自然科学基金(批准号:11404198,11275118,91430109)、山西省高等学校科技创新项目(批准号:2014102)、山西大学科研启动金(批准号:011151801004)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404198, 11275118, 91430109), the Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi Province (STIP), China (Grant No. 2014102), the Launch of the Scientific Research of Shanxi University, China (Grant No. 011151801004), and the National Fundamental Training, China (Grant No. J1103210).
    [1]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [2]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [3]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [4]

    Graham R, Höhnerbach M 1984 Phys. Lett. A 101 61

    [5]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 59 3695]

    [8]

    Zhao W L, Wang J Z, Dou F Q 2012 Acta Phys. Sin. 61 240302 (in Chinese) [赵文垒, 王建忠, 豆福全 2012 61 240302]

    [9]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [10]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [11]

    Yu L X, Fan J T, Zhu S Q, Chen G, Jia S T, Nori F 2014 Phys. Rev. A 89 023838

    [12]

    Fan J T, Yang Z W, Zhang Y W, Ma J, Chen G, Jia S T 2014 Phys. Rev. A 89 023812

    [13]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [14]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [15]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [16]

    Holstein T, Primakoff H 1949 Phys. Rev. A 58 1098

    [17]

    Hillery M, Mlodinow L D 1984 Phys. Rev. A 31 797

  • [1]

    Hepp K, Lieb E H 1973 Ann. Phys. 76 360

    [2]

    Hioes F T 1973 Phys. Rev. A 8 1440

    [3]

    Liu N, Lian J L, Ma J, Xiao L T, Chen G, Liang J Q, Jia S T 2011 Phys. Rev. A 83 033601

    [4]

    Graham R, Höhnerbach M 1984 Phys. Lett. A 101 61

    [5]

    Furuya K, Nemes M C, Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524

    [6]

    Song L J, Yan D, Gai Y J, Wang Y B 2011 Acta Phys. Sin. 60 020302 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2011 60 020302]

    [7]

    Song L J, Yan D, Gai Y J, Wang Y B 2010 Acta Phys. Sin. 59 3695 (in Chinese) [宋立军, 严冬, 盖永杰, 王玉波 2010 59 3695]

    [8]

    Zhao W L, Wang J Z, Dou F Q 2012 Acta Phys. Sin. 61 240302 (in Chinese) [赵文垒, 王建忠, 豆福全 2012 61 240302]

    [9]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203

    [10]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301

    [11]

    Yu L X, Fan J T, Zhu S Q, Chen G, Jia S T, Nori F 2014 Phys. Rev. A 89 023838

    [12]

    Fan J T, Yang Z W, Zhang Y W, Ma J, Chen G, Jia S T 2014 Phys. Rev. A 89 023812

    [13]

    Zhao X Q, Liu N, Liang J Q 2014 Phys. Rev. A 90 023622

    [14]

    Bastidas V M, Emary C, Regler B, Brandes T 2012 Phys. Rev. Lett. 108 043003

    [15]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 053623

    [16]

    Holstein T, Primakoff H 1949 Phys. Rev. A 58 1098

    [17]

    Hillery M, Mlodinow L D 1984 Phys. Rev. A 31 797

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变.  , 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 黄彬源, 贺志, 陈雨. 基于依赖强度Dicke模型的量子电池充电性能.  , 2023, 72(18): 180301. doi: 10.7498/aps.72.20230578
    [3] 毛丽君, 张云波. 三量子比特Dicke模型中的两体和三体纠缠动力学.  , 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [4] 张识, 王攀, 张瑞浩, 陈红. 选取任意庞加莱截面的新方法.  , 2020, 69(4): 040503. doi: 10.7498/aps.69.20191585
    [5] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟.  , 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [6] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变.  , 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [7] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变.  , 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [8] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩.  , 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [9] 陈红, 吴玲. 设计和实现三维空间任意庞加莱截平面电路.  , 2013, 62(2): 020507. doi: 10.7498/aps.62.020507
    [10] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干.  , 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [11] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌.  , 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [12] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系.  , 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [13] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动.  , 2010, 59(4): 2406-2415. doi: 10.7498/aps.59.2406
    [14] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性.  , 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [15] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应.  , 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [16] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象.  , 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [17] 张 淼, 贾焕玉. 非Lamb-Dicke近似下制备囚禁冷离子的振动相干态.  , 2008, 57(2): 880-886. doi: 10.7498/aps.57.880
    [18] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌.  , 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [19] 肖兴国, 刘辽. Brans-Dicke理论中的非Accetta真空虫洞解.  , 1994, 43(11): 1907-1912. doi: 10.7498/aps.43.1907
    [20] 张纪岳, 徐明. 一种双光子量子光学模型的混沌行为.  , 1993, 42(8): 1205-1209. doi: 10.7498/aps.42.1205
计量
  • 文章访问数:  5910
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-21
  • 修回日期:  2017-03-28
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map