搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒固体应力转向比的光弹法探测

宗谨 周志刚 王文广 张晟 林平 石玉仁 厚美瑛

引用本文:
Citation:

颗粒固体应力转向比的光弹法探测

宗谨, 周志刚, 王文广, 张晟, 林平, 石玉仁, 厚美瑛

Janssen ratio in granular solid measured by photoelastic method

Zong Jin, Zhou Zhi-Gang, Wang Wen-Guang, Zhang Sheng, Lin Ping, Shi Yu-Ren, Hou Mei-Ying
PDF
导出引用
  • 利用压敏双折射光学特性材料,实验测量了在自然堆积和密堆积两种制样方式下颗粒仓轴向荷载在仓壁上随深度的分布.发现在填充颗粒总质量相同、容器不变的情况下,颗粒仓轴向荷载在仓壁上的分布不随颗粒深度单调变化,而是随深度呈单峰结构,数值模拟与实验观察定性符合,并且发现峰值依赖于荷载大小和样品的制备方式.另外,我们也测量了在不同填充高度下的颗粒底部平均应力随轴向荷载的变化,将其与边壁应力对比,得到颗粒体系不同深度处的转向比.
    In this work Janssen ratio is measured in a dense granular pack. The pressure on the side walls as a function of the depth of the pack with top load under gravity is measured by photoelastic method. The samples are prepared by point source method with and without tapping. A non-monotonic distribution of the side pressure along the depth is found. Numerical simulation is performed and shows qualitative consistency with the experimental finding. The apparent weight of the sample is measured for different filling heights and for different top loads. Comparing with the normal stresses on the silo wall for different heights, we obtain the Janssen ratio J =xx/zz as a function of height. We find that although uJ = 0.11 is a constant as is expected, the Janssen Ratio is height dependent. It becomes height independent only when the top load is large enough.
      通信作者: 厚美瑛, mayhou@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11274354,11474326,11565021)、中国科学院空间科学战略性先导科技专项(批准号:XDA04020200)和地震行业科研经费(批准号:201208011)资助的课题.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274354, 11474326, 11565021), the Strategic Priority Research Program-SJ-10 of the Chinese Academy of Sciences (Grant No. XDA04020200), and the Special Fund for Earthquake Research of China (Grant No. 201208011).
    [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    de Gennes P G 1992 Rev. Mod. Phys. 64 645

    [3]

    Liu A J, Nagel S R 1998 Nature 396 21

    [4]

    Zuriguel I, Mullin T, Arévalo R 2008 Phys. Rev. E 77 1006

    [5]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T 1995 Science 269 513

    [6]

    Geng J, Longhi E, Behringer R P, Howell D W 2002 Phys. Rev. E 64 060301

    [7]

    Janssen H A 1896 Civ. Inst. Eng. Proc. 124 553

    [8]

    Sperl M 2006 Granular Matter 8 59

    [9]

    Vitelli V, van Hecke M 2011 Nature 480 325

    [10]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [11]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [12]

    Hartley R R, Behringer R P 2003 Nature 421 928

    [13]

    Luding S 2005 Nature 435 159

    [14]

    Goldenberg C, Goldhirsch I 2005 Nature 435 188

    [15]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [16]

    Hartley R R 2003 Ph. D. Dissertation (USA: Duke University)

    [17]

    Tian Y, Qi J, Lai J, Zhou Q 2013 International Joint Conference on IEEE Nov. 2-4, 2013 p547

    [18]

    Qi J, Li K C, Jiang H, Zhou Q, Yang L 2015 Int. J. Comput. Sci. Engineer. 11 p330

    [19]

    Silbert L E, Ertas D, Grest G S, Halsey T C, Levine D 2002 Phys. Rev. E 65 031304

    [20]

    Silbert L E, Ertas D, Grest G S, Halsey T C, Levine D, Plimption S J 2001 Phys. Rev. E 64 051302

    [21]

    Allen M P, Tildesley D J 1989 Computer Simulation of Liquids (Oxford: Oxford University Press)

    [22]

    Sperl M 2006 Granular Matter 8 59

    [23]

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503 (in Chinese) [李智峰, 彭政, 蒋亦民 2014 63 104503]

    [24]

    Jiang Y M, Zheng H P 2008 Acta Phys. Sin. 57 7360 (in Chinese) [蒋亦民, 郑鹤鹏 2008 57 7360]

  • [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    de Gennes P G 1992 Rev. Mod. Phys. 64 645

    [3]

    Liu A J, Nagel S R 1998 Nature 396 21

    [4]

    Zuriguel I, Mullin T, Arévalo R 2008 Phys. Rev. E 77 1006

    [5]

    Liu C H, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T 1995 Science 269 513

    [6]

    Geng J, Longhi E, Behringer R P, Howell D W 2002 Phys. Rev. E 64 060301

    [7]

    Janssen H A 1896 Civ. Inst. Eng. Proc. 124 553

    [8]

    Sperl M 2006 Granular Matter 8 59

    [9]

    Vitelli V, van Hecke M 2011 Nature 480 325

    [10]

    Bi D P, Zhang J, Chakraborty B, Behringer R P 2011 Nature 480 355

    [11]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [12]

    Hartley R R, Behringer R P 2003 Nature 421 928

    [13]

    Luding S 2005 Nature 435 159

    [14]

    Goldenberg C, Goldhirsch I 2005 Nature 435 188

    [15]

    Corwin E I, Jaeger H M, Nagel S R 2005 Nature 435 1075

    [16]

    Hartley R R 2003 Ph. D. Dissertation (USA: Duke University)

    [17]

    Tian Y, Qi J, Lai J, Zhou Q 2013 International Joint Conference on IEEE Nov. 2-4, 2013 p547

    [18]

    Qi J, Li K C, Jiang H, Zhou Q, Yang L 2015 Int. J. Comput. Sci. Engineer. 11 p330

    [19]

    Silbert L E, Ertas D, Grest G S, Halsey T C, Levine D 2002 Phys. Rev. E 65 031304

    [20]

    Silbert L E, Ertas D, Grest G S, Halsey T C, Levine D, Plimption S J 2001 Phys. Rev. E 64 051302

    [21]

    Allen M P, Tildesley D J 1989 Computer Simulation of Liquids (Oxford: Oxford University Press)

    [22]

    Sperl M 2006 Granular Matter 8 59

    [23]

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503 (in Chinese) [李智峰, 彭政, 蒋亦民 2014 63 104503]

    [24]

    Jiang Y M, Zheng H P 2008 Acta Phys. Sin. 57 7360 (in Chinese) [蒋亦民, 郑鹤鹏 2008 57 7360]

  • [1] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面.  , 2024, 73(22): 224201. doi: 10.7498/aps.73.20240764
    [2] 赵豪, 吴志豪, 胡晓红, 凡凤仙, 苏明旭. 外加液滴条件下固体细颗粒声凝并特性.  , 2023, 72(6): 064702. doi: 10.7498/aps.72.20221912
    [3] 颜细平, 彭政, 何菲菲, 蒋亦民. 类固态颗粒物质的剪切弹性行为测量.  , 2016, 65(12): 124501. doi: 10.7498/aps.65.124501
    [4] 杨林, 胡林, 张兴刚. 二维晶格颗粒堆积中侧壁的压力分布与转向系数.  , 2015, 64(13): 134502. doi: 10.7498/aps.64.134502
    [5] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究.  , 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [6] 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究.  , 2013, 62(22): 224210. doi: 10.7498/aps.62.224210
    [7] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征.  , 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [8] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [9] 廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华. 一种全光开关及任意比能量输出光分束器的设计.  , 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [10] 徐波, 王树林, 李来强, 李生娟. 固体颗粒的结构演化与机械力化学效应.  , 2012, 61(9): 090201. doi: 10.7498/aps.61.090201
    [11] 郑鹤鹏, 蒋亦民, 彭政, 符力平. 颗粒固体弹性势能的声波性质.  , 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [12] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测.  , 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [13] 江少恩, 缪文勇, 况龙钰. 神光Ⅱ与神光Ⅲ原型上的辐射驱动小收缩比内爆靶设计.  , 2011, 60(5): 055206. doi: 10.7498/aps.60.055206
    [14] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟.  , 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [15] 刘会师, 忻向军, 尹霄丽, 余重秀, 张琦. 切比雪夫光混沌发生器的优化.  , 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [16] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布.  , 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [17] 杨永明, 许启明, 过 振. 不同抽运光分布下端面抽运固体激光器中晶体的端面温度分布研究.  , 2008, 57(1): 223-229. doi: 10.7498/aps.57.223
    [18] 乔利锋, 张永明, 谢启源, 方 俊, 王进军. 火灾烟颗粒的分形结构形状模拟与光散射计算.  , 2007, 56(11): 6736-6741. doi: 10.7498/aps.56.6736
    [19] 吕晓阳, 陈若航, 刘慕仁, 孔令江. CA交通流模型的演化方程与转向概率效应.  , 1997, 46(3): 435-441. doi: 10.7498/aps.46.435
    [20] 李铁城. KDP,ADP调制器中高斯光束的传播和消光比的理论.  , 1975, 24(4): 268-280. doi: 10.7498/aps.24.268
计量
  • 文章访问数:  5837
  • PDF下载量:  855
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-19
  • 修回日期:  2017-03-06
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map