搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变换热力学的三维任意形状热斗篷设计

夏舸 杨立 寇蔚 杜永成

引用本文:
Citation:

基于变换热力学的三维任意形状热斗篷设计

夏舸, 杨立, 寇蔚, 杜永成

Design and research of three-dimensional thermal cloak with arbitrary shape based on the transformation thermodynamics

Xia Ge, Yang Li, Kou Wei, Du Yong-Cheng
PDF
导出引用
  • 在变换热力学的基础上,通过坐标变换的方法,推导出三维任意形状热斗篷导热系数的通解表达式,并进行了全波仿真验证.结果表明: 热流均能绕过保护区域流出,保护区域的温度保持不变,而且热斗篷外的温度场并没有破坏,具有很好的热保护和热隐身的效果.这一方法把变换热力学从二维拓展到三维,具有普遍的适用性.同时,这种技术为热流流动路径和目标温度场的控制奠定了理论基础,在微芯片、电动机的保护以及目标热隐身上有潜在应用.
    Based on the form-invariance of the thermal conduction equation different from wave equation, transformation thermodynamics has opened up a new area for the arbitrarily manipulating of heat fluxes at discretion by using thermal metamaterials. Moreover, it can help researchers to design different kinds of thermal devices with many unique properties that cannot be simply realized by natural materials, such as thermal cloaking, thermal concentrating, thermal rotating and thermal illusion. Among these devices, the conventional thermal cloak enabling heat fluxes to travel around the inner region, has attracted the most significant attention so far. At the present time, the studies of the thermal cloak mainly focus on two-dimensional space with arbitrary shape and three-dimensional space with regular shape, which appear to be far from enough to meet the engineering requirements. In this paper, we derive the general expression of the thermal conductivity for three-dimensional thermal cloak with arbitrary shape according to the transformation thermodynamics. In this paper, the thermal conductivity in the polar coordinate system is transformed into that in the Cartesian coordinate system by means of coordinate transformation. On the basis of the expression of the thermal conductivity, we adopt full-wave simulation by using the software COMSOL Multiphysics to analyze the cloaking performances of five designed thermal cloaks, i.e., spherical thermal cloak, ellipsoidal thermal cloak, three-dimensional conformal thermal cloak with arbitrary shapes, non-conformal thermal cloak with the sphere outside the ellipsoid, and three-dimensional non-conformal thermal cloak with arbitrary shapes. The results show that the heat fluxes travel around the protection area, and eventually return to their original paths. The temperature profile inside the thermal cloak keeps unchanged, and the temperature field outside the thermal cloak is not distorted, which proves that the cloak has a perfect thermal invisible effect. Both the conformal and non-conformal thermal cloak have perfect thermal protection and invisible function. In this paper, the transformation thermodynamics is extended from two-dimensional thermal cloak to three-dimensional thermal cloak with better universality. At the same time, this technology provides more flexibility in controlling heat flow and target temperature field, which will have potential applications in designing microchip, motor protection and target thermal stealth. It is believed that the method presented here can be applied to other branches of physics, such as acoustics, matter waves and elastic waves.
      通信作者: 杨立, yangli123123@126.com
    • 基金项目: 国家自然科学基金(批准号:11504426)和国防预研基金(批准号:1010502020202)资助的课题.
      Corresponding author: Yang Li, yangli123123@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504426) and the National Defense Foundation of China (Grant No. 1010502020202).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Opt. Express 14 9794

    [4]

    Pendry J B, Schurig D, Smith D R 2007 Opt. Express 15 14772

    [5]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Cummer S A, Popa B, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621

    [8]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [9]

    Aubry A, Lei D Y, Fernándezdomínguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574

    [10]

    Xu H X, Wang G M, Qi M Q, Li L, Cui T J 2013 Adv. Opt. Mater. 1 495

    [11]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [12]

    Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [13]

    Chen Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [14]

    Wei Q, Chen Y, Liu X J 2012 Appl. Phys. A 109 913

    [15]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [16]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [17]

    Hu R, Wei X L, Hu J Y, Luo X B 2014 Sci. Rep. 4 3600

    [18]

    Li T H, Zhu D L, Mao F C, Huang M, Yang J J, Li S B 2016 Front. Phys. 11 1

    [19]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [20]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [21]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [22]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛春福, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 63 014401]

    [23]

    Qin C L, Yang J J, Huang M 2014 Acta Phys. Sin. 63 194402 (in Chinese) [秦春雷, 杨晶晶, 黄铭 2014 63 194402]

    [24]

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing: Higher Education Press) p43 (in Chinese) [杨世铭, 陶文铨 2006 传热学(第四版)(北京: 高等教育出版社) 第43页]

    [25]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [26]

    Chen T, Weng C N, Tsai Y L 2015 J. Appl. Phys. 117 054904

    [27]

    Wu Q, Zhang K, Meng F Y, Li L W 2010 Acta Phys. Sin. 59 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 59 6071]

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [2]

    Leonhardt U 2006 Science 312 1777

    [3]

    Pendry J B, Schurig D, Smith D R 2006 Opt. Express 14 9794

    [4]

    Pendry J B, Schurig D, Smith D R 2007 Opt. Express 15 14772

    [5]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991

    [6]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [7]

    Cummer S A, Popa B, Schurig D, Smith D R, Pendry J B 2006 Phys. Rev. E 74 036621

    [8]

    Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R, Pendry J B 2008 Photon. Nanostruct. Fundam. Appl. 6 87

    [9]

    Aubry A, Lei D Y, Fernándezdomínguez A I, Sonnefraud Y, Maier S A, Pendry J B 2010 Nano Lett. 10 2574

    [10]

    Xu H X, Wang G M, Qi M Q, Li L, Cui T J 2013 Adv. Opt. Mater. 1 495

    [11]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [12]

    Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [13]

    Chen Y, Yang F, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 151913

    [14]

    Wei Q, Chen Y, Liu X J 2012 Appl. Phys. A 109 913

    [15]

    Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002

    [16]

    Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301

    [17]

    Hu R, Wei X L, Hu J Y, Luo X B 2014 Sci. Rep. 4 3600

    [18]

    Li T H, Zhu D L, Mao F C, Huang M, Yang J J, Li S B 2016 Front. Phys. 11 1

    [19]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [20]

    Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207

    [21]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [22]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛春福, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 63 014401]

    [23]

    Qin C L, Yang J J, Huang M 2014 Acta Phys. Sin. 63 194402 (in Chinese) [秦春雷, 杨晶晶, 黄铭 2014 63 194402]

    [24]

    Yang S M, Tao W Q 2006 Heat Transfer (4th Ed.) (Beijing: Higher Education Press) p43 (in Chinese) [杨世铭, 陶文铨 2006 传热学(第四版)(北京: 高等教育出版社) 第43页]

    [25]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [26]

    Chen T, Weng C N, Tsai Y L 2015 J. Appl. Phys. 117 054904

    [27]

    Wu Q, Zhang K, Meng F Y, Li L W 2010 Acta Phys. Sin. 59 6071 (in Chinese) [吴群, 张狂, 孟繁义, 李乐伟 2010 59 6071]

  • [1] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布.  , 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [2] 夏舸, 杨立, 寇蔚, 杜永成. 非均匀背景中任意柱状热斗篷的研究与设计.  , 2017, 66(11): 114401. doi: 10.7498/aps.66.114401
    [3] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应.  , 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [4] 薛明晰, 陈志斌, 王伟明, 欧阳慧泉, 刘先红, 宋岩, 张超, 肖文健, 侯章亚. 多波长红外激光二极管峰值光谱热漂移研究.  , 2014, 63(15): 154206. doi: 10.7498/aps.63.154206
    [5] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究.  , 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [6] 秦春雷, 杨晶晶, 黄铭, 胡艺耀. 基于拉普拉斯方程的任意形状热斗篷研究与设计.  , 2014, 63(19): 194402. doi: 10.7498/aps.63.194402
    [7] 李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌. 基于变换热力学的任意形状热集中器研究与设计.  , 2014, 63(5): 054401. doi: 10.7498/aps.63.054401
    [8] 毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌. 任意横截面柱形热斗篷研究与设计.  , 2014, 63(1): 014401. doi: 10.7498/aps.63.014401
    [9] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究.  , 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [10] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响.  , 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [11] 冯爱霞, 龚志强, 黄琰, 王启光. 全球温度场信息熵的时空特征分析.  , 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [12] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究.  , 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [13] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟.  , 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [14] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场.  , 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [15] 吴迪, 宫野, 雷明凯, 刘金远, 王晓钢, 刘悦, 马腾才. 高功率离子束辐照膜基双层靶温度场的数值研究.  , 2010, 59(7): 4826-4830. doi: 10.7498/aps.59.4826
    [16] 王启光, 侯威, 郑志海, 高荣. 东亚区域大气长程相关性.  , 2009, 58(9): 6640-6650. doi: 10.7498/aps.58.6640
    [17] 支蓉, 龚志强, 郑志海, 周磊. 基于矩阵理论的全球温度资料的尺度性研究.  , 2009, 58(3): 2113-2120. doi: 10.7498/aps.58.2113
    [18] 杨永明, 许启明, 过 振. 不同抽运光分布下端面抽运固体激光器中晶体的端面温度分布研究.  , 2008, 57(1): 223-229. doi: 10.7498/aps.57.223
    [19] 刘明强, 李斌成. 光学薄膜样品的温度场和形变场分析.  , 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [20] 闫长春, 薛国刚, 刘 诚, 高淑梅. 多层超薄薄膜介质光热辐射的三维理论研究.  , 2005, 54(7): 3058-3062. doi: 10.7498/aps.54.3058
计量
  • 文章访问数:  6648
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-22
  • 修回日期:  2017-03-09
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map