搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸附氢分子的振动态及熵的计算

王小霞 刘鑫 张琼 陈宏善

引用本文:
Citation:

吸附氢分子的振动态及熵的计算

王小霞, 刘鑫, 张琼, 陈宏善

Vibration states and entropy of adsorbed hydrogen molecules

Wang Xiao-Xia, Liu Xin, Zhang Qiong, Chen Hong-Shan
PDF
导出引用
  • 用第一性原理方法研究了H2在 (MgO)9及 (AlN)12团簇上的吸附态、振动模式及熵.分析表明,吸附体系的振动中有六个简正模式可归为氢分子的振动;由于氢分子质量很小,零点能修正对吸附能有重要影响.利用振动配分函数计算了吸附氢分子的熵,表明吸附态H2 的熵主要决定于较低的同相振动的频率,并不完全与吸附强度相关;在标准大气压下70350 K的温度范围内,吸附H2的熵与气态H2的熵之间存在很好的线性关系,吸附后H2的熵减小约10.2R.
    The entropy and enthalpy changes upon absorption determine the equilibrium adsorption states, the adsorption/desorption kinetics, and the surface reaction rates. However, it is difficult to measure experimentally or calculate theoretically the entropy of adsorption state. Hydrogen is considered as the most promising candidate to solve the global energy problems, and the storage by adsorption on light porous solids constitutes a main avenue to research field. An ideal storage system should be able to operate under ambient conditions with high recycling capacity and suitable uptake-release kinetics. The entropy of adsorbed H2 molecules is of great significance for determining the optimum conditions for hydrogen storage and for designing the storage materials. To the best of our knowledge, however, the only report on the entropy of the adsorbed H2 molecules is that adsorbed on alkali-metal exchanged zeolites at temperatures around 100 K. Due to different assumptions of the entropy changes, the values of the optimum enthalpy H reported in the publications cover a wide range. In this paper, the adsorption states, vibrational modes, and the entropies of H2 molecules adsorbed on (MgO)9 and (AlN)12 clusters are studied by using first principal method. The computation is performed by the second-order perturbation theory (MP2) with the triple zeta basis set including polarization functions 6-311G(d, p). The very-tight convergence criterion is used to obtain reliable vibration frequencies. Analysis shows that six vibrational modes of the adsorption complexes can be attributed to the vibration of H2 molecule. For these normal modes, the amplitudes of the displacements of cluster atoms are usually two orders smaller than those of the hydrogen atoms. As the vibrational frequency is inversely proportional to the square root of the mass, the zero-point energy has an important influence on the adsorption energy. The ZPE correction exceeds half of the adsorption energy, and the adsorption on the anions is not stable after including the correction. Under the harmonic approximation, the normal vibration modes are independent, so the entropy of adsorbed H2 molecules can be calculated by using the vibrational partition function based on the vibrational frequencies. The results indicate that the entropy values depend mainly on the two lowest in-phase vibrational frequencies and it is not directly related to the adsorption strength but determined by the shape of the potential energy surface. In a temperature range of 70350 K and at a pressure of 0.1 MPa, there is a good linear correlation between the entropy of adsorbed H2 and the entropy of gas-phase. The entropy of H2 decreases about 10.2R after adsorption.
      通信作者: 陈宏善, chenhs@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11164024,11164034)资助的课题.
      Corresponding author: Chen Hong-Shan, chenhs@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164024, 11164034).
    [1]

    Campbell C T, Sellers J R 2012 J. Amer. Chem. Soc. 134 18109

    [2]

    de Moor B A, Ghysels A, Reyniers M F, van S V, Waroquier M, Marin G B 2011 J. Chem. Theory Comput. 7 1090

    [3]

    Simon C M, Kim J, Lin L C, Martin R L, Haranczyk M, Smit B 2014 Phys. Chem. Chem. Phys. 16 5499

    [4]

    Efremenko I, Sheintuch M 2005 Langmuir 21 6282

    [5]

    Yang J, Sudik A, Wolverton C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [6]

    Tang W S, Chotard J N, Raybaud P, Janot R 2014 J. Phys. Chem. C 118 3409

    [7]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688

    [8]

    Otero Areán C, Nachtigallová D, Nachtigall P, Garrone E, Rodríguez Delgado M 2007 Phys. Chem. Chem. Phys. 9 1421

    [9]

    Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S 2003 J. Chem. Phys. 119 2376

    [10]

    Garberoglio G, Skoulidas A I, Jognson J K 2005 J. Phys. Chem. B 109 13094

    [11]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618

    [12]

    Hehre W J, Pople J A 1972 J. Chem. Phys. 56 4233

    [13]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [14]

    Wang Z C 2008 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p192 (in Chinese) [汪志成 2008 热力学统计物理(北京: 高等教育出版社) 第192页]

    [15]

    Larese J Z, Arnold T, Frazier L, Hinde R J, Ramirez-Cuesta A J 2008 Phys. Rev. Lett. 101 165302

    [16]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2009 ACS Nano 3 621

    [17]

    Zhang Y, Chen H S, Yin Y H, Song Y 2014 J. Phys. B 47 025102

    [18]

    Dong R, Chen X S, Wang X F, Lu W 2008 J. Chem. Phys. 129 044705

    [19]

    Liu Z F, Wang X Q, Liu G B, Zhou P, Sui J, Wang X F, Zhu H J, Hou Z 2013 Phys. Chem. Chem. Phys. 15 8186

    [20]

    Yong Y L, Song B, He P 2011 Phys. Chem. Chem. Phys. 13 16182

    [21]

    Okamoto Y, Miyamoto Y 2001 J. Phys. Chem. B 105 3470

    [22]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Amer. Chem. Soc. 127 14582

    [23]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [24]

    Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [25]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Amer. Chem. Soc. 128 9741

    [26]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

  • [1]

    Campbell C T, Sellers J R 2012 J. Amer. Chem. Soc. 134 18109

    [2]

    de Moor B A, Ghysels A, Reyniers M F, van S V, Waroquier M, Marin G B 2011 J. Chem. Theory Comput. 7 1090

    [3]

    Simon C M, Kim J, Lin L C, Martin R L, Haranczyk M, Smit B 2014 Phys. Chem. Chem. Phys. 16 5499

    [4]

    Efremenko I, Sheintuch M 2005 Langmuir 21 6282

    [5]

    Yang J, Sudik A, Wolverton C, Siegel D J 2010 Chem. Soc. Rev. 39 656

    [6]

    Tang W S, Chotard J N, Raybaud P, Janot R 2014 J. Phys. Chem. C 118 3409

    [7]

    Bhatia S K, Myers A L 2006 Langmuir 22 1688

    [8]

    Otero Areán C, Nachtigallová D, Nachtigall P, Garrone E, Rodríguez Delgado M 2007 Phys. Chem. Chem. Phys. 9 1421

    [9]

    Li J, Furuta T, Goto H, Ohashi T, Fujiwara Y, Yip S 2003 J. Chem. Phys. 119 2376

    [10]

    Garberoglio G, Skoulidas A I, Jognson J K 2005 J. Phys. Chem. B 109 13094

    [11]

    Møller C, Plesset M S 1934 Phys. Rev. 46 618

    [12]

    Hehre W J, Pople J A 1972 J. Chem. Phys. 56 4233

    [13]

    Frisch M J, Tracks G W, Schlegel H B, et al. 2013 Gaussian09 Revision D.01 Wallingford CT: Gaussian, Inc.

    [14]

    Wang Z C 2008 Thermodynamics and Statistical Physics (Beijing: Higher Education Press) p192 (in Chinese) [汪志成 2008 热力学统计物理(北京: 高等教育出版社) 第192页]

    [15]

    Larese J Z, Arnold T, Frazier L, Hinde R J, Ramirez-Cuesta A J 2008 Phys. Rev. Lett. 101 165302

    [16]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2009 ACS Nano 3 621

    [17]

    Zhang Y, Chen H S, Yin Y H, Song Y 2014 J. Phys. B 47 025102

    [18]

    Dong R, Chen X S, Wang X F, Lu W 2008 J. Chem. Phys. 129 044705

    [19]

    Liu Z F, Wang X Q, Liu G B, Zhou P, Sui J, Wang X F, Zhu H J, Hou Z 2013 Phys. Chem. Chem. Phys. 15 8186

    [20]

    Yong Y L, Song B, He P 2011 Phys. Chem. Chem. Phys. 13 16182

    [21]

    Okamoto Y, Miyamoto Y 2001 J. Phys. Chem. B 105 3470

    [22]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Amer. Chem. Soc. 127 14582

    [23]

    Yildirim T, Ciraci S 2005 Phys. Rev. Lett. 94 175501

    [24]

    Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B 2005 Phys. Rev. Lett. 94 155504

    [25]

    Sun Q, Jena P, Wang Q, Marquez M 2006 J. Amer. Chem. Soc. 128 9741

    [26]

    Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z 2008 Phys. Rev. Lett. 100 206806

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究.  , 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [3] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [4] 李文杰, 杨慧慧, 陈宏善. H2在Al7-团簇解离吸附的理论研究.  , 2013, 62(5): 053601. doi: 10.7498/aps.62.053601
    [5] 姚建刚, 宫宝安, 王渊旭. NO在Yn(n=1–12)团簇表面的解离性吸附.  , 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [6] 陈季香, 羌建兵, 王清, 董闯. 以最大原子密度定义合金相中的第一近邻团簇.  , 2012, 61(4): 046102. doi: 10.7498/aps.61.046102
    [7] 冯成义, 程新路, 张红. 仲氢及正氘团簇的量子定域和超流动性研究.  , 2011, 60(1): 013602. doi: 10.7498/aps.60.013602
    [8] 陈宏善, 陈华君. H2在MgO团簇吸附的从头计算研究.  , 2011, 60(7): 073601. doi: 10.7498/aps.60.073601
    [9] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测.  , 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [10] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究.  , 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [11] 周诗韵, 王 音, 宁西京. 一种寻找团簇异构体的准动力学方法.  , 2008, 57(1): 387-391. doi: 10.7498/aps.57.387
    [12] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究.  , 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [13] 石中兵, 姚良骅, 丁玄同, 段旭如, 冯北滨, 刘泽田, 肖维文, 孙红娟, 李 旭, 李 伟, 陈程远, 焦一鸣. HL-2A托卡马克超声分子束注入深度和加料效果研究.  , 2007, 56(8): 4771-4777. doi: 10.7498/aps.56.4771
    [14] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 董 璨, 邵士勇. 纳秒强激光中丙酮团簇增强的多价电离现象.  , 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [15] 何春龙, 袁 喆, 申旭阳, 许雅歌, 李家明. 价键优选法:二、三周期小团簇的理论研究.  , 2006, 55(1): 162-170. doi: 10.7498/aps.55.162
    [16] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认.  , 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [17] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法.  , 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [18] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 张娜珍. CS2团簇增强的激光多价电离现象的质谱研究.  , 2005, 54(11): 5098-5103. doi: 10.7498/aps.54.5098
    [19] 杨朝文, V.A.Khodyrev, V.S.Kulikauskas. H+2,H+3团簇离子在沟道条件下的背散射 质子产额测量.  , 2003, 52(8): 1895-1900. doi: 10.7498/aps.52.1895
    [20] 王锋, 张丰收, 肖国青, 朱志远. Na2对超短激光脉冲的响应.  , 2001, 50(4): 667-673. doi: 10.7498/aps.50.667
计量
  • 文章访问数:  8331
  • PDF下载量:  766
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2017-03-10
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map