搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋白石型光子晶体红外隐身材料的制备

张连超 邱丽莉 芦薇 于颖杰 孟子晖 王树山 薛敏 刘文芳

引用本文:
Citation:

蛋白石型光子晶体红外隐身材料的制备

张连超, 邱丽莉, 芦薇, 于颖杰, 孟子晖, 王树山, 薛敏, 刘文芳

Preparation of opal photonic crystal infrared stealth materials

Zhang Lian-Chao, Qiu Li-Li, Lu Wei, Yu Ying-Jie, Meng Zi-Hui, Wang Shu-Shan, Xue Min, Liu Wen-Fang
PDF
导出引用
  • 基于光子晶体的红外隐身材料,主要采取一维层层堆叠结构和三维木堆结构等来实现对红外波段电磁波辐射性能的调控. 本文报道了一种操作简易、成本低廉的光子晶体红外隐身材料制备方法. 通过优化的垂直沉积法,微米级SiO2胶体微球自组装成高质量的蛋白石型光子晶体结构. 对SiO2胶体微球进行优选,成功制备了禁带位于2.8-3.5 m,8.0-10.0 m的SiO2胶体晶体蛋白石型光子晶体材料. 该材料可改变目标相应波段的红外辐射特征,具有目标红外波段的隐身效果.
    With the development of infrared detection technology, the survival of military target is now under serious threat. Therefore, new infrared stealth technologies and materials are now in an urgent demand. The photonic crystal (PhC) possesses regularly repeating structure which results in band-gap and diffraction satisfying Bragg's law of diffraction. The PhC presents unique optical properties and functionality. The PhC with band-gap located in visible band is used widely as biosensor, chemical sensor, optical filter, reflector, modulator, metasurface and solar cell. The PhC with band-gap located in infrared band can be used to control the propagations of the electromagnetic waves of infrared band, and could be used as a promising material in the infrared stealth technology. Photonic structure used to tune the infrared radiation usually has a one-dimensional layer-by-layer stack or three-dimensional wood pile structure. However, the poor flexibility, low strength, small area coverage, complicated fabrication process and high cost can prevent this new infrared stealth technology from being applied and developed. In this report, a simple and cost-effective method of preparing the opal PhC materials is proposed, and this infrared stealth material forbids electromagnetic waves of infrared band to propagate on account of band-gap.In this paper, opal PhCs materials with high quality are assembled from SiO2 colloidal microspheres with micrometer size by using optimized vertical deposition method. We calculate the relation between the diameter of SiO2 colloidal microsphere and the frequency of opal PhCs band-gap in theory and verified in experiment, which operates in the working band of infrared detector. The results show that the diameters of SiO2 colloidal microspheres should be 1.33-2.22 m and 3.56-5.33 m. A series of monodispersed micrometer SiO2 colloidal microspheres is prepared by the modified Stber method, and bigger microspheres are prepared by using the seeded polymerization method. Then, we choose the diameters of 1.5 m and 4.3 m SiO2 microspheres to prepare the opal PhCs materials. The PhCs materials assembled by 1.5 m SiO2 microspheres are prepared in alcohol under 60 ℃ or in acetone under 40 ℃; while the PhCs material assembled by 4.3 m SiO2 microspheres is prepared in alcohol/dibromomethane =3:1 under 60 ℃. Finally, the opal PhC materials with band-gap located in 2.8-3.5 m and 8.0-10.0 m are successfully prepared, and the widths of band-gap are 0.7 m and 1.9 m, respectively. These opal PhCs materials could change the infrared radiation characteristics of the target in infrared waveband, and meet the requirements of wide band-gap for infrared stealth materials.
      通信作者: 邱丽莉, qiulili@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21375009,U153010105)和北京理工大学科技创新计划基础研究基金(批准号:20151042004)资助的课题.
      Corresponding author: Qiu Li-Li, qiulili@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21375009, U153010105) and the Foundation for Science and Technology Innovation Program of Beijing Institute of Technology, China (Grant No. 20151042004).
    [1]

    Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380

    [2]

    Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744

    [3]

    Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674

    [4]

    Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009

    [5]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 56 5508]

    [6]

    Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111

    [7]

    Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58

    [8]

    Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065

    [9]

    Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345

    [10]

    Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208

    [11]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [12]

    Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]

    [13]

    Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]

    [14]

    Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68

    [15]

    Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939

    [16]

    Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17

    [17]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 63 154207]

    [18]

    Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]

    [19]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]

    [20]

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202]

    [21]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 62 064215]

    [22]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 63 014210]

    [23]

    Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]

    [24]

    Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 63 128801]

    [25]

    Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8

    [27]

    Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343

    [28]

    Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]

    [29]

    Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]

    [30]

    Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]

    [31]

    Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46

    [32]

    Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905

    [33]

    Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243

    [34]

    Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52

  • [1]

    Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380

    [2]

    Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744

    [3]

    Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674

    [4]

    Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009

    [5]

    Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 56 5508]

    [6]

    Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111

    [7]

    Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58

    [8]

    Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065

    [9]

    Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345

    [10]

    Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208

    [11]

    Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339

    [12]

    Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]

    [13]

    Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]

    [14]

    Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68

    [15]

    Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939

    [16]

    Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17

    [17]

    Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 63 154207]

    [18]

    Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]

    [19]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]

    [20]

    Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202]

    [21]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 62 064215]

    [22]

    Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 63 014210]

    [23]

    Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]

    [24]

    Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 63 128801]

    [25]

    Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8

    [27]

    Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343

    [28]

    Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]

    [29]

    Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]

    [30]

    Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]

    [31]

    Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46

    [32]

    Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905

    [33]

    Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243

    [34]

    Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52

  • [1] 王龙, 汪刘应, 刘顾, 唐修检, 葛超群, 王滨, 许可俊, 王新军. 基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计.  , 2023, 72(24): 244202. doi: 10.7498/aps.72.20231084
    [2] 曹亚庆, 黄火林, 孙仲豪, 李飞雨, 白洪亮, 张卉, 孙楠, Yung C.Liang. 基于宽禁带GaN基异质结结构的垂直型高温霍尔传感器.  , 2019, 68(15): 158502. doi: 10.7498/aps.68.20190413
    [3] 陈敏, 万婷, 王征, 罗朝明, 刘靖. 宽绝对禁带的一维磁性光子晶体结构.  , 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [4] 吴赛, 李伟斌, 石峰, 蒋世春, 蓝鼎, 王育人. 受限胶体液滴蒸发过程中胶体颗粒沉积过程观察.  , 2015, 64(9): 096101. doi: 10.7498/aps.64.096101
    [5] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计.  , 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [6] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计.  , 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [7] 周年杰, 黄伟其, 苗信建, 王刚, 董泰阁, 黄忠梅, 尹君. 量子受限效应和对称性效应对硅光子晶体禁带的影响.  , 2015, 64(6): 064208. doi: 10.7498/aps.64.064208
    [8] 沈娟娟, 何兴道, 刘彬, 李淑静. 基于太极形介质柱六角光子晶体禁带特性研究.  , 2013, 62(8): 084213. doi: 10.7498/aps.62.084213
    [9] 王慧琴, 龚旗煌. 随机光纤激光器中光纤与随机介质匹配问题的研究.  , 2013, 62(21): 214202. doi: 10.7498/aps.62.214202
    [10] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响.  , 2012, 61(7): 075203. doi: 10.7498/aps.61.075203
    [11] 袁桂芳, 韩利红, 俞重远, 刘玉敏, 芦鹏飞. 二维光子晶体禁带特性研究.  , 2011, 60(10): 104214. doi: 10.7498/aps.60.104214
    [12] 杨毅彪, 王拴锋, 李秀杰, 王云才, 梁伟. 介质柱型二维Triangular格子光子晶体的禁带特性.  , 2010, 59(7): 5073-5077. doi: 10.7498/aps.59.5073
    [13] 任晓斌, 翟天瑞, 任芝, 林晶, 周静, 刘大禾. 非线性曝光对三维全息光子晶体禁带特性的影响.  , 2009, 58(5): 3208-3213. doi: 10.7498/aps.58.3208
    [14] 程旭攀, 曹全喜. 二维圆柱形光子晶体的完全禁带研究.  , 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [15] 刘 欢, 姚建铨, 李恩邦, 温午麒, 张 强, 王 鹏. 三维光子晶体典型结构完全禁带的最佳参数理论分析.  , 2006, 55(1): 230-237. doi: 10.7498/aps.55.230
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 李明宇, 顾培夫. 光子晶体偏振分光镜的优化设计.  , 2005, 54(5): 2358-2363. doi: 10.7498/aps.54.2358
    [18] 汪 静, 袁春伟, 黄忠兵, 唐芳琼. 高质量胶体晶体薄膜的快速制备及表征.  , 2004, 53(9): 3054-3058. doi: 10.7498/aps.53.3054
    [19] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体.  , 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] 郑君, 叶志成, 唐伟国, 刘大禾. 体积全息图中的光子禁带.  , 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
计量
  • 文章访问数:  7667
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-31
  • 修回日期:  2017-01-21
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map