-
With the development of infrared detection technology, the survival of military target is now under serious threat. Therefore, new infrared stealth technologies and materials are now in an urgent demand. The photonic crystal (PhC) possesses regularly repeating structure which results in band-gap and diffraction satisfying Bragg's law of diffraction. The PhC presents unique optical properties and functionality. The PhC with band-gap located in visible band is used widely as biosensor, chemical sensor, optical filter, reflector, modulator, metasurface and solar cell. The PhC with band-gap located in infrared band can be used to control the propagations of the electromagnetic waves of infrared band, and could be used as a promising material in the infrared stealth technology. Photonic structure used to tune the infrared radiation usually has a one-dimensional layer-by-layer stack or three-dimensional wood pile structure. However, the poor flexibility, low strength, small area coverage, complicated fabrication process and high cost can prevent this new infrared stealth technology from being applied and developed. In this report, a simple and cost-effective method of preparing the opal PhC materials is proposed, and this infrared stealth material forbids electromagnetic waves of infrared band to propagate on account of band-gap.In this paper, opal PhCs materials with high quality are assembled from SiO2 colloidal microspheres with micrometer size by using optimized vertical deposition method. We calculate the relation between the diameter of SiO2 colloidal microsphere and the frequency of opal PhCs band-gap in theory and verified in experiment, which operates in the working band of infrared detector. The results show that the diameters of SiO2 colloidal microspheres should be 1.33-2.22 m and 3.56-5.33 m. A series of monodispersed micrometer SiO2 colloidal microspheres is prepared by the modified Stber method, and bigger microspheres are prepared by using the seeded polymerization method. Then, we choose the diameters of 1.5 m and 4.3 m SiO2 microspheres to prepare the opal PhCs materials. The PhCs materials assembled by 1.5 m SiO2 microspheres are prepared in alcohol under 60 ℃ or in acetone under 40 ℃; while the PhCs material assembled by 4.3 m SiO2 microspheres is prepared in alcohol/dibromomethane =3:1 under 60 ℃. Finally, the opal PhC materials with band-gap located in 2.8-3.5 m and 8.0-10.0 m are successfully prepared, and the widths of band-gap are 0.7 m and 1.9 m, respectively. These opal PhCs materials could change the infrared radiation characteristics of the target in infrared waveband, and meet the requirements of wide band-gap for infrared stealth materials.
-
Keywords:
- photonic bandgap /
- colloidal crystal array /
- optimized vertical deposition /
- infrared stealth
[1] Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380
[2] Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744
[3] Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674
[4] Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009
[5] Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 56 5508]
[6] Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111
[7] Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58
[8] Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065
[9] Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345
[10] Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208
[11] Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339
[12] Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]
[13] Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]
[14] Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68
[15] Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939
[16] Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17
[17] Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 63 154207]
[18] Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]
[19] Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]
[20] Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202]
[21] Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 62 064215]
[22] Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 63 014210]
[23] Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]
[24] Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 63 128801]
[25] Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]
[26] Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8
[27] Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343
[28] Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]
[29] Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]
[30] Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]
[31] Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46
[32] Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905
[33] Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243
[34] Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52
-
[1] Li R, Lu Y H, Gong C L, Liu Y 2012 Infrared Phys. Technol. 55 380
[2] Liu F, Shao X P, Han P L, Li X B, Yang C 2014 Opt. Eng. 53 744
[3] Wang R F, Lu J H 2015 Proc. SPIE (Bellingham: SPIE) 9674
[4] Chen X, Li J S, Tang Y, Hu B 2010 Adv. Intel. Soft Comput. 114 1009
[5] Zhang S Q, Shi Y L, Huang C G, Lian C C 2007 Acta Phys. Sin. 56 5508 (in Chinese) [张拴勤, 石云龙, 黄长庚, 连长春 2007 56 5508]
[6] Mao Z, Yu X, Zhang L, Zhong Y, Xu H 2014 Vacuum 104 111
[7] Wang T, He J P, Zhao J H, Ding X C, Zhao J Q, Wu S C, Guo Y X 2010 Micropor. Mesopor. Mat. 134 58
[8] Wang W, Fang S, Zhang L, Mao Z 2014 Text. Res. J. 85 1065
[9] Liu X F, Lai Y K, Huang J Y, Aldeyab S S, Zhang K Q 2014 J. Mater. Chem. 3 345
[10] Mao Z P, Wang W, Liu Y, Zhang L P, Zhong Y 2014 Thin Solid Films 558 208
[11] Liu D, Cheng H, Xing X, Zhang C, Zheng W 2016 Infrared Phys. Technol. 77 339
[12] Xue F, Duan T R, Xue M, Liu F, Wang Y F, Wei Z Q, Meng Z H 2011 Chin. J. Anal. Chem. 39 1015 (in Chinese) [薛飞, 段廷蕊, 薛敏, 刘烽, 王一飞, 韦泽全, 孟子晖 2011 分析化学 39 1015]
[13] Lu W, Xue F, Huang S Y, Meng Z H, Xue M 2012 Chin. J. Anal. Chem. 40 1561 (in Chinese) [芦薇, 薛飞, 黄舒悦, 孟子晖, 薛敏 2012 分析化学 40 1561]
[14] Chen W, Xue M, Xu F, Mu X R, Xu Z B, Meng Z H, Zhu G X, Shea K J 2015 Talanta 140 68
[15] Xue F, Asher S A, Meng Z H, Wang F Y, Lu W, Xu M, Qi F L 2015 RSC Adv. 5 18939
[16] Dai X, Xiang Y, Wen S 2011 Prog. Electromagn. Res. 120 17
[17] Chen W D, Dong X Y, Chen Y, Zhu Q G, Wang N 2014 Acta Phys. Sin. 63 154207 (in Chinese) [陈卫东, 董昕宇, 陈颖, 朱奇光, 王宁 2014 63 154207]
[18] Zhu Q G, Dong X Y, Wang C F, Wang N, Chen W D 2015 Acta Phys. Sin. 64 034209 (in Chinese) [朱奇光, 董昕宇, 王春芳, 王宁, 陈卫东 2015 64 034209]
[19] Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]
[20] Zhuang Y Y, Zhou W, Ji K, Chen H M 2015 Acta Phys. Sin. 64 224202 (in Chinese) [庄煜阳, 周雯, 季珂, 陈鹤鸣 2015 64 224202]
[21] Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 62 064215]
[22] Yang P L, Dai S X, Yi C S, Zhang P Q, Wang X S, Wu Y H, Yu Y S, Lin C G 2014 Acta Phys. Sin. 63 014210 (in Chinese) [杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规 2014 63 014210]
[23] Zhang Z M, Wu B, Liu Y J, Jiang L, Mi N, Wang X S, Liu Z J, Liu S, Pan Z H, Nie Q H, Dai S X 2016 Acta Phys. Sin. 65 124205 (in Chinese) [赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋 2016 65 124205]
[24] Chen P Z, Hou G F, Suo S, Ni D, Zhang J J, Zhang X D, Zhao Y 2014 Acta Phys. Sin. 63 128801 (in Chinese) [陈培专, 侯国付, 索松, 倪牮, 张建军, 张晓丹, 赵颖 2014 63 128801]
[25] Gao Y F, Shi J M, Zhao D P, Xu B 2012 Infrared Laser Eng. 41 970 (in Chinese) [高永芳, 时家明, 赵大鹏, 许波 2012 红外与激光工程 41 970]
[26] Arpin K A, Losego M D, Cloud A N, Ning H L, Mallek J, Sergeant P N, Zhu L X, Yu Z F, Kalanyan B, Fan S H, Braun P V 2013 Nat. Commun. 4 8
[27] Zhang W, Xu G, Zhang J, Wang H, Hou H 2014 Opt. Mater. 37 343
[28] Li J, Ye H, Wei M L 2010 Acta Armamentarii 31 1426 (in Chinese) [李进, 叶宏, 韦孟柳 2010 兵工学报 31 1426]
[29] Li W S, Zhang Q, Huang H M, Fu Y H 2012 Infrared Laser Eng. 41 2578 (in Chinese) [李文胜, 张琴, 黄海铭, 付艳华 2012 红外与激光工程 41 2578]
[30] Zhang M, Yang X J, Liu M Y 2009 J. Academy of Armored Force Engineering 23 89 (in Chinese) [张民, 杨小静, 刘名扬 2009 装甲兵工程学院学报 23 89]
[31] Zhang W, Xu G, Shi X, Ma H, Li L 2015 Photonic Nanostruct. 14 46
[32] Wang Z, Cheng Y, Nie Y, Wang X, Gong R 2014 J. Appl. Phys. 116 054905
[33] Lin S Y, Fleming J G, Chow E, Bur J, Choi K K 2000 Phys. Rev. B 62 2243
[34] Fleming J G, Lin S Y, Kady I E, Biswas R, Ho K M 2002 Nature 417 52
计量
- 文章访问数: 7668
- PDF下载量: 394
- 被引次数: 0