-
高分辨率光纤应变传感系统是地球物理学中地壳微弱形变观测的有力工具.相比于传统的地壳应变观测技术,光纤应变传感器具有测量分辨率高、抗干扰能力强、尺寸小、可复用、易于安装布设等特性,在建立新型地壳形变监测网络中具有很大的应用潜力.本文围绕面向地壳形变观测的纳应变级分辨率光纤应变传感器技术,阐述了应变传感原理与实现超高测量分辨率的机理,并详细介绍了扫频探测、Pound-Drever-Hall解调技术、边带探测、双回路锁定传感、传感器时分复用等技术及相应的传感器系统实现方案,最后,给出了超高分辨率光纤传感器在现场观测的实验结果与分析.Due to the advantages of high resolution, low cost, small size, easy deployment and capability of multiplexed sensing, the recent developed optical fiber grating sensors provide powerful tools for crustal deformation monitoring. This paper reviews the development of several types of fiber-optic sensors with ultrahigh resolution in quasi-static domain. The fiber Bragg grating based Fabry-Perot interferometers and the -phase-shifted fiber Bragg gratings which are used as sensing components in the high resolution sensors are introduced. Some novel techniques such as interrogating the sensing components with intensity modulation sideband, dual feedback-loop structure for high bandwidth/large measurement range sensing, and the time-domain multiplexing of the high resolution quasi-static strain sensor are discussed in detail. Each sensing scheme with both operation process and achieved performances are given. The implementation of fiber grating sensors for in-situ measurement of crustal deformation and the results are also introduced. Compared with the traditional methods used in crustal deformation observation, the high-performance fiber optic strain sensors mentioned in the paper shows great potentials in providing wider measurement approaches in geophysical researches.
-
Keywords:
- fiber-optic sensing /
- crustal deformation measurement /
- high resolution /
- fiber Bragg grating
[1] Chouet B A 1996 Nature 380 309
[2] Crescentini L, Amoruso A, Scarpa R 1999 Science 286 2132
[3] Gladwin M T, Hart R 1985 Pure Appl. Geophys. 123 59
[4] Berger J, Lovberg R H 1970 Science 170 296
[5] Rao Y J 1997 Measur. Sci. Technol. 8 355
[6] Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823
[7] Davis M A, Kersey A D 1994 Elect. Lett. 30 75
[8] Liu Q, Tokunaga T, He Z 2011 Opt. Exp. 19 20214
[9] Morey W W, Bailey T J, Glenn W H, Meltz G 1992 Digest of Conference on Optical Fiber Communication WA2
[10] Erdogan T 1997 J. Lightwave Technol. 15 1277
[11] Liu Q, Tokunaga T, He Z 2011 Opt. Lett. 36 4044
[12] Dreve R W P, Hall J L, Kowalski F V, et al. 1983 Applied Physics B-Photophysics and Laser Chemistry 31 97
[13] Black E D 2001 Am. J. Phys. 69 79
[14] Huang C, Jing W C, Liu K, Zhang Y M, Peng G D 2007 IEEE Photon. Technol. Lett. 19 707
[15] Huang W Z, Zhang W T, Li F 2015 Opt. Lett. 40 1406
[16] Liu Q, Togunaga T, He Z 2012 Opt. Lett. 37 434
[17] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Exp. 16 1945
[18] Chow J H, McClelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 1923
[19] Lam T T Y, Chow J H, Shaddock D A 2010 Appl. Opt. 49 4029
[20] Chen J, Liu Q, Fan X, He Z 2016 Opt. Lett. 41 1066
[21] Littler I C M, Gray M B, Chow J H 2009 Opt. Express 17 11077
[22] Wang Y M, Hu C C, Liu Q, Guo H Y, Yin G L, Li Z Y 2016 Acta Phys. Sin. 65 204209 (in Chinese)[王一鸣, 胡陈晨, 刘泉, 郭会勇, 殷广林, 李政颖2016 65 204209]
[23] Chen J, Liu Q, Fan X, He Z 2016 IEEE Photon. Technol. Lett. 28 2311
[24] Liu Q, He Z, Tokunaga T 2015 Opt. Exp. 23 A428
-
[1] Chouet B A 1996 Nature 380 309
[2] Crescentini L, Amoruso A, Scarpa R 1999 Science 286 2132
[3] Gladwin M T, Hart R 1985 Pure Appl. Geophys. 123 59
[4] Berger J, Lovberg R H 1970 Science 170 296
[5] Rao Y J 1997 Measur. Sci. Technol. 8 355
[6] Meltz G, Morey W W, Glenn W H 1989 Opt. Lett. 14 823
[7] Davis M A, Kersey A D 1994 Elect. Lett. 30 75
[8] Liu Q, Tokunaga T, He Z 2011 Opt. Exp. 19 20214
[9] Morey W W, Bailey T J, Glenn W H, Meltz G 1992 Digest of Conference on Optical Fiber Communication WA2
[10] Erdogan T 1997 J. Lightwave Technol. 15 1277
[11] Liu Q, Tokunaga T, He Z 2011 Opt. Lett. 36 4044
[12] Dreve R W P, Hall J L, Kowalski F V, et al. 1983 Applied Physics B-Photophysics and Laser Chemistry 31 97
[13] Black E D 2001 Am. J. Phys. 69 79
[14] Huang C, Jing W C, Liu K, Zhang Y M, Peng G D 2007 IEEE Photon. Technol. Lett. 19 707
[15] Huang W Z, Zhang W T, Li F 2015 Opt. Lett. 40 1406
[16] Liu Q, Togunaga T, He Z 2012 Opt. Lett. 37 434
[17] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Exp. 16 1945
[18] Chow J H, McClelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 1923
[19] Lam T T Y, Chow J H, Shaddock D A 2010 Appl. Opt. 49 4029
[20] Chen J, Liu Q, Fan X, He Z 2016 Opt. Lett. 41 1066
[21] Littler I C M, Gray M B, Chow J H 2009 Opt. Express 17 11077
[22] Wang Y M, Hu C C, Liu Q, Guo H Y, Yin G L, Li Z Y 2016 Acta Phys. Sin. 65 204209 (in Chinese)[王一鸣, 胡陈晨, 刘泉, 郭会勇, 殷广林, 李政颖2016 65 204209]
[23] Chen J, Liu Q, Fan X, He Z 2016 IEEE Photon. Technol. Lett. 28 2311
[24] Liu Q, He Z, Tokunaga T 2015 Opt. Exp. 23 A428
计量
- 文章访问数: 7837
- PDF下载量: 375
- 被引次数: 0