搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工沿场不均匀体对短波垂直探测影响的理论分析

吕立斌 李清亮 郝书吉 吴振森

引用本文:
Citation:

人工沿场不均匀体对短波垂直探测影响的理论分析

吕立斌, 李清亮, 郝书吉, 吴振森

Theoretical analysis of effects on high frequency vertical sounding by artificial field-aligned irregularities

Lü Li-Bin, Li Qing-Liang, Hao Shu-Ji, Wu Zhen-Sen
PDF
导出引用
  • 从人工沿场不均匀体的产生机制出发,分析其对无线电波的散射特性,基于射线追踪技术,建立了短波垂直探测波经人工沿场不均匀体散射的传播模型,理论分析了不同纬度人工沿场不均匀体对垂直探测波传播路径的影响.结果表明:人工沿场不均匀体所导致的垂直探测电离图人工扩展描迹随地理纬度升高和地磁倾角增大而变短,解释了高纬度地区电离层加热不能有效观测人工扩展描迹的缘由.最后对中低纬度地区存在人工沿场不均匀体时可能产生的人工扩展描迹现象进行了预测评估,并分析了其重要应用方向.
    Ionospheric heating experiments have been conducted widely at high power heating stations, such as Arecibo, Platteville, HAARP, etc. It has been found that once high-power high-frequency (HF) radio wave is injected into the ionosphere, the electron temperature and density in the illuminated region of the ionosphere can be disturbed, and furthermore, a large number of nonlinear phenomena may be triggered because of the complicated instabilities. One of the most interesting heating effects is the generation of the artificial field-aligned irregularities (AFAI), which has profound influences on electromagnetic wave propagation. Many diagnostic methods have been used for studying the characteristics of AFAI, such as the HF vertical/oblique sounding, HF/VHF coherent radar, etc. During the heating experiments, traces spreading on frequency or height are observed from the HF vertical sounding ionograms, which suggests that the propagation of the sounding wave will be affected by AFAI. In the ionosphere F region, the electron diffusion and thermal conductivity rate are greater along the geomagnetic field lines than across the field line, leading to a stretch of AFAI along the geomagnetic field line. For the special structure, the AFAI will scatter the incident wave in a cone with the axis parallel to the geomagnetic field direction, which is called artificial field-aligned scattering (AFAS). Because of the high sensitivity to the geomagnetic field of AFAS, we try to study different effects on the HF vertical sounding of AFAI generated at different latitudes, by constructing a propagation model and performing a simulation, in order to seek the potential applications in HF transmission. Based on the special scattering feature of AFAI and the ray tracing technique, a propagation model for HF vertical sounding scattered by AFAI is proposed. With this model the ray paths of the sounding waves with AFAI are simulated in amid-latitude region, and a new kind of artificial spread trace is found to start from the heating frequency and spread to higher band. Taking account of the strong dependence of the AFAS on the geomagnetic field, the influences of AFAI on the HF vertical sounding at different latitudes are analyzed theoretically. It is indicated that the artificial spread traces will appear only when the following two conditions are satisfied: 1) the sounding wave can reach the AFAI height; 2) the sounding wave is incident perpendicularly to the AFAI. It is also shown that the spread trace becomes shorter with the latitude and the inclination increasing. Furthermore, the simulations from different heating stations suggest that artificial spread traces do not exist when HF vertical sounding is located just below the AFAI, which explains why such phenomena cannot be observed at high latitudes. Nevertheless, if the HF vertical sounding moves outside the heating station toward the south, the spread traces will be apparent for Arecibo, limited for Platteville and still unavailable for HAARP. Finally, if the AFAI is assumed to be present, apparent artificial spread traces of the mid-low latitude are predicted, and the important valuable applications of AFAI in HF transmission are proposed.
      通信作者: 吕立斌, libin_lv@163.com;wuzhs@mail.xidian.edu.cn ; 吴振森, libin_lv@163.com;wuzhs@mail.xidian.edu.cn
    • 基金项目: 电波环境特性及模化技术重点实验室开放课题专项资金(批准号:201600017)资助的课题.
      Corresponding author: Lü Li-Bin, libin_lv@163.com;wuzhs@mail.xidian.edu.cn ; Wu Zhen-Sen, libin_lv@163.com;wuzhs@mail.xidian.edu.cn
    • Funds: Project supported by the National Key Laboratory of Electromagnetic Environment, China (Grant No. 201600017).
    [1]

    Utlaut W F 1970J.Geophys.Res. 75 6402

    [2]

    Utlaut W F, Violette E J, Paul A K 1970J.Geophys.Res. 75 6429

    [3]

    Georges T M 1970J.Geophys.Res. 75 6436

    [4]

    Thome G D, Blood D W 1974Radio Sci. 9 917

    [5]

    Fialer P A 1974Radio Sci. 9 923

    [6]

    Tsai L C, Berkey F T, Wong A Y, Pau J 2001J.Atoms.Solar-Terr.Phys. 63 107

    [7]

    Kuo S, Snyder A 2013J.Geophys.Res.Space Phys. 118 2734

    [8]

    Kuo S, Snyder A, Lee M C 2014Phys.Plasmas 21 062902

    [9]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Chinese J.Geophys. 56 2503(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球 56 2503]

    [10]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Acta Phys.Sin. 62 229402(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013 62 229402]

    [11]

    Xie H, Xiao Z 1993Chinese J.Geophys. 36 18(in Chinese)[谢红, 肖佐1993地球 36 18]

    [12]

    Wang C S, Li J 1994Acta Phys.Sin. 43 1476(in Chinese)[黄朝松, 李钧1994 43 1476]

    [13]

    Zhou L, Tang C J 2009Acta Phys.Sin. 58 8254(in Chinese)[周磊, 唐昌建2009 58 8254]

    [14]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009Acta Phys.Sin. 58 7382(in Chinese)[邓峰, 赵正予, 石润, 张援农2009 58 7382]

    [15]

    Song L, Miao J S, Li Q L 2014Chinese J.Radio Science 29 539(in Chinese)[宋磊, 苗建苏, 李清亮2014电波科学学报29 539]

    [16]

    Huang C S, Keley M C 1996Acta Phys.Sin. 45 1830(in Chinese)[黄朝松, Keley M C 1996 45 1830]

    [17]

    Hou J C 1986J.Wuhan Univ.(Nat.Sci.Ed) 4 49(in Chinese)[侯昌杰1986武汉大学学报4 49]

    [18]

    Minkoff J, Kugelman P, Weissman I 1974Radio Sci. 9 941

    [19]

    Minkoff J, Laviola M, Abrams S, Porter D 1974Radio Sci. 9 957

    [20]

    Minkoff J 1974Radio Sci. 9 997

    [21]

    Perkins F W 1974Radio Sci. 9 1065

    [22]

    Braginskii S I 1965Rev.Plasma Phys. 1 205

    [23]

    Jones R M 1975OT Report 75 6

  • [1]

    Utlaut W F 1970J.Geophys.Res. 75 6402

    [2]

    Utlaut W F, Violette E J, Paul A K 1970J.Geophys.Res. 75 6429

    [3]

    Georges T M 1970J.Geophys.Res. 75 6436

    [4]

    Thome G D, Blood D W 1974Radio Sci. 9 917

    [5]

    Fialer P A 1974Radio Sci. 9 923

    [6]

    Tsai L C, Berkey F T, Wong A Y, Pau J 2001J.Atoms.Solar-Terr.Phys. 63 107

    [7]

    Kuo S, Snyder A 2013J.Geophys.Res.Space Phys. 118 2734

    [8]

    Kuo S, Snyder A, Lee M C 2014Phys.Plasmas 21 062902

    [9]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Chinese J.Geophys. 56 2503(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球 56 2503]

    [10]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013Acta Phys.Sin. 62 229402(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013 62 229402]

    [11]

    Xie H, Xiao Z 1993Chinese J.Geophys. 36 18(in Chinese)[谢红, 肖佐1993地球 36 18]

    [12]

    Wang C S, Li J 1994Acta Phys.Sin. 43 1476(in Chinese)[黄朝松, 李钧1994 43 1476]

    [13]

    Zhou L, Tang C J 2009Acta Phys.Sin. 58 8254(in Chinese)[周磊, 唐昌建2009 58 8254]

    [14]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009Acta Phys.Sin. 58 7382(in Chinese)[邓峰, 赵正予, 石润, 张援农2009 58 7382]

    [15]

    Song L, Miao J S, Li Q L 2014Chinese J.Radio Science 29 539(in Chinese)[宋磊, 苗建苏, 李清亮2014电波科学学报29 539]

    [16]

    Huang C S, Keley M C 1996Acta Phys.Sin. 45 1830(in Chinese)[黄朝松, Keley M C 1996 45 1830]

    [17]

    Hou J C 1986J.Wuhan Univ.(Nat.Sci.Ed) 4 49(in Chinese)[侯昌杰1986武汉大学学报4 49]

    [18]

    Minkoff J, Kugelman P, Weissman I 1974Radio Sci. 9 941

    [19]

    Minkoff J, Laviola M, Abrams S, Porter D 1974Radio Sci. 9 957

    [20]

    Minkoff J 1974Radio Sci. 9 997

    [21]

    Perkins F W 1974Radio Sci. 9 1065

    [22]

    Braginskii S I 1965Rev.Plasma Phys. 1 205

    [23]

    Jones R M 1975OT Report 75 6

  • [1] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究.  , 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [2] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析.  , 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [3] 刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强. 电磁监测试验卫星朗缪尔探针电离层探测技术.  , 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [4] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应.  , 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [5] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析.  , 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [6] 陈丽娟, 鲁世平, 莫嘉琪. 磁层-电离层耦合过程中等离子体粒子运动的周期轨.  , 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [7] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究.  , 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [8] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟.  , 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [9] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪.  , 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [10] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演.  , 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [11] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响.  , 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [12] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证.  , 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [13] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究.  , 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [14] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究.  , 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [15] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟.  , 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [16] 吕克璞, 段文山, 赵金保, 王本仁, 魏荣爵. 不均匀等离子体中孤子的传播.  , 1999, 48(11): 1969-1975. doi: 10.7498/aps.48.1969
    [17] 黄朝松, 李均, M. C. KELLEY. 电离层等离子体交换不稳定性与大气重力波的耦合.  , 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论.  , 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响.  , 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告.  , 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  6210
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-31
  • 修回日期:  2016-11-14
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map