搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度尘埃等离子体的非相干散射理论研究

徐彬 李辉 王占阁 许正文 吴健

引用本文:
Citation:

高密度尘埃等离子体的非相干散射理论研究

徐彬, 李辉, 王占阁, 许正文, 吴健

Study on incoherent scatter theory of high density dusty plasma

Xu Bin, Li Hui, Wang Zhan-Ge, Xu Zheng-Wen, Wu Jian
PDF
导出引用
  • 将带电尘埃粒子的影响引入到非相干散射理论中,建立了包含电子、离子和尘埃组分的尘埃等离子体非相干散射理论模型.对火箭喷焰高密度尘埃等离子体条件下,离子谐振区和尘埃谐振区的非相干散射谱线进行了计算,讨论了尘埃粒径、温度和密度对谱线结构的影响,获得了尘埃颗粒影响非相干散射回波特征的基本物理规律.
    Incoherent scatter radar is one of the most important detection instruments of the space plasma. But because of the low dust density in natural space plasma, the contribution of charged dust to incoherent scatter spectrum can be completely ignored, therefore the incoherent scattering theory has not appeared in dusty plasma. In the solid rocket plume, the propellant combustion can form a large number of nanometer- and micronmeter-sized dusty particles, and produce a high electron density from high temperature ionization, which makes considerable contributionto charged dusty particles with the high density. Therefore, we develop the incoherent scattering theory of dusty plasma in order to calculate the scattering characteristics of high density dusty plasma produced by rocket plume, for example. The theoretical model including electrons, ions and dusty particles is established by combining effects of charged dusty particles. The incoherent scatter spectral lines of ion resonance region and dust resonance regionare calculated. The effects of dusty particle radius, temperature and density on spectral line structure are discussed. With the increases of dusty particle radius and density, the amplitude of power spectrum increases. With the increase of dust temperature, the amplitude of power spectrum decreases. In the dust resonance region, the control mechanism of dust in spectrum is similar to that of the ions. With the increase of particle size (mass) and decrease of the temperature, the spectrum width narrows, and amplitude and area increase with the increase of density. But in the ion resonance region, the dust control mechanism is completely different, and the influence of the dust on ion line is in the way of attracting ions. So with the increase of dust density, ion line characteristics do not show that the area increases, and dust controls ions by adjusting the Debye radius or electrostatic shielding ball size. By comparing the ion lines with and without dust under the same parameters conditions, the amplitude of the ion line with dust is much larger than that without dust, and the resonance frequency of the ion line is greatly changed. With the dust particles of a relatively high density, one can enhance the ion line, hence the incoherent scattering phenomenon can be more easily observed in rocket plume. On the other hand, due to significant changes of frequency and amplitude in the ion line spectrum, the incoherent scattering inversion method based on the traditional theory will cause a large error in the inversion parameter, even a failure of parameter retrieval. The incoherent scattering theory and relevant physical laws of dusty plasma are presented, which are of great significance for establishing the incoherent scattering theory system and studying the rocket plume parameters.
      通信作者: 王占阁, xiaogezi2@126.com
    • 基金项目: 国家自然科学基金(批准号:41004065,41104108,61601419,11672068)和电波环境特性及模化技术国防重点实验室基金资助的课题.
      Corresponding author: Wang Zhan-Ge, xiaogezi2@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.41004065,41104108,61601419,11672068) and the National Key Laboratory of Electromagnetic Environment,China.
    [1]

    Gordon W E 1958 Proc. IRE 46 1824

    [2]

    Fejer J A 1960 Can. J. Phys. 38 1114

    [3]

    Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79

    [4]

    Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473

    [5]

    Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091

    [6]

    Salpeter E E 1960 Phys. Rev. 120 1528

    [7]

    Salpeter E E 1961 Phys. Rev. 122 1663

    [8]

    Hagfors T 1961 J. Geophys. Res. 66 1699

    [9]

    Evans J V 1969 Proc. IEEE 57 496

    [10]

    Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128

    [11]

    Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751

    [12]

    Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653

    [13]

    Suvanto K 1988 Radio Sci. 23 989

    [14]

    Suvanto K 1990 Plan. Space Sci. 38 903

    [15]

    Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82

    [16]

    Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 58 736]

    [17]

    Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112

    [18]

    Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335

    [19]

    Gustavsson B 2005 Ann. Geophys. 23 1747

    [20]

    Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857

    [21]

    Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492

    [22]

    Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]

    [23]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702

    [24]

    Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301

    [25]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540

    [26]

    Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117

    [27]

    Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601

  • [1]

    Gordon W E 1958 Proc. IRE 46 1824

    [2]

    Fejer J A 1960 Can. J. Phys. 38 1114

    [3]

    Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79

    [4]

    Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473

    [5]

    Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091

    [6]

    Salpeter E E 1960 Phys. Rev. 120 1528

    [7]

    Salpeter E E 1961 Phys. Rev. 122 1663

    [8]

    Hagfors T 1961 J. Geophys. Res. 66 1699

    [9]

    Evans J V 1969 Proc. IEEE 57 496

    [10]

    Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128

    [11]

    Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751

    [12]

    Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653

    [13]

    Suvanto K 1988 Radio Sci. 23 989

    [14]

    Suvanto K 1990 Plan. Space Sci. 38 903

    [15]

    Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82

    [16]

    Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 58 736]

    [17]

    Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112

    [18]

    Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335

    [19]

    Gustavsson B 2005 Ann. Geophys. 23 1747

    [20]

    Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857

    [21]

    Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492

    [22]

    Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]

    [23]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702

    [24]

    Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301

    [25]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540

    [26]

    Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117

    [27]

    Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601

  • [1] 林麦麦, 宋晨光, 王明月, 陈富艳. 含有非热电子和陷俘离子的复杂等离子体中非线性尘埃声波的传播特征.  , 2024, 73(7): 075201. doi: 10.7498/aps.73.20231967
    [2] 李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟. 月球南极尘埃等离子体环境特性.  , 2024, 73(15): 155201. doi: 10.7498/aps.73.20240599
    [3] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟.  , 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [4] 林麦麦, 王明月, 蒋蕾. 多组分尘埃等离子体中非线性尘埃声孤波的传播特征.  , 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [5] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性.  , 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [6] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征.  , 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [7] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波.  , 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [8] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解.  , 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [9] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动.  , 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [10] 李学良, 石雁祥. 双麦克斯韦分布尘埃等离子体中尘埃粒子的充电研究.  , 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [11] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题.  , 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [12] 石雁祥, 吴健, 葛德彪. 弱电离尘埃等离子体的介电张量研究.  , 2009, 58(8): 5507-5512. doi: 10.7498/aps.58.5507
    [13] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性.  , 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [14] 王红艳, 段文山. 对含有非热力学平衡离子的尘埃等离子体中孤波特性的理论研究.  , 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [15] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [16] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒.  , 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [17] 吴 静, 张鹏云, 宋巧丽, 张家良, 王德真. 反应等离子体中尘埃空洞形成的实验研究.  , 2005, 54(10): 4794-4798. doi: 10.7498/aps.54.4794
    [18] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据.  , 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [19] 侯璐景, 王友年. 尘埃颗粒在射频等离子体鞘层中的非线性共振现象的理论研究.  , 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [20] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播.  , 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
计量
  • 文章访问数:  6320
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-23
  • 修回日期:  2016-10-28
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map