-
Incoherent scatter radar is one of the most important detection instruments of the space plasma. But because of the low dust density in natural space plasma, the contribution of charged dust to incoherent scatter spectrum can be completely ignored, therefore the incoherent scattering theory has not appeared in dusty plasma. In the solid rocket plume, the propellant combustion can form a large number of nanometer- and micronmeter-sized dusty particles, and produce a high electron density from high temperature ionization, which makes considerable contributionto charged dusty particles with the high density. Therefore, we develop the incoherent scattering theory of dusty plasma in order to calculate the scattering characteristics of high density dusty plasma produced by rocket plume, for example. The theoretical model including electrons, ions and dusty particles is established by combining effects of charged dusty particles. The incoherent scatter spectral lines of ion resonance region and dust resonance regionare calculated. The effects of dusty particle radius, temperature and density on spectral line structure are discussed. With the increases of dusty particle radius and density, the amplitude of power spectrum increases. With the increase of dust temperature, the amplitude of power spectrum decreases. In the dust resonance region, the control mechanism of dust in spectrum is similar to that of the ions. With the increase of particle size (mass) and decrease of the temperature, the spectrum width narrows, and amplitude and area increase with the increase of density. But in the ion resonance region, the dust control mechanism is completely different, and the influence of the dust on ion line is in the way of attracting ions. So with the increase of dust density, ion line characteristics do not show that the area increases, and dust controls ions by adjusting the Debye radius or electrostatic shielding ball size. By comparing the ion lines with and without dust under the same parameters conditions, the amplitude of the ion line with dust is much larger than that without dust, and the resonance frequency of the ion line is greatly changed. With the dust particles of a relatively high density, one can enhance the ion line, hence the incoherent scattering phenomenon can be more easily observed in rocket plume. On the other hand, due to significant changes of frequency and amplitude in the ion line spectrum, the incoherent scattering inversion method based on the traditional theory will cause a large error in the inversion parameter, even a failure of parameter retrieval. The incoherent scattering theory and relevant physical laws of dusty plasma are presented, which are of great significance for establishing the incoherent scattering theory system and studying the rocket plume parameters.
-
Keywords:
- dusty plasma /
- rocket plume /
- incoherent scatter theory /
- dusty particle density
[1] Gordon W E 1958 Proc. IRE 46 1824
[2] Fejer J A 1960 Can. J. Phys. 38 1114
[3] Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79
[4] Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473
[5] Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091
[6] Salpeter E E 1960 Phys. Rev. 120 1528
[7] Salpeter E E 1961 Phys. Rev. 122 1663
[8] Hagfors T 1961 J. Geophys. Res. 66 1699
[9] Evans J V 1969 Proc. IEEE 57 496
[10] Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128
[11] Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751
[12] Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653
[13] Suvanto K 1988 Radio Sci. 23 989
[14] Suvanto K 1990 Plan. Space Sci. 38 903
[15] Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82
[16] Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 58 736]
[17] Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112
[18] Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335
[19] Gustavsson B 2005 Ann. Geophys. 23 1747
[20] Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857
[21] Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492
[22] Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]
[23] Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702
[24] Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301
[25] Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540
[26] Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117
[27] Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601
-
[1] Gordon W E 1958 Proc. IRE 46 1824
[2] Fejer J A 1960 Can. J. Phys. 38 1114
[3] Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79
[4] Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473
[5] Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091
[6] Salpeter E E 1960 Phys. Rev. 120 1528
[7] Salpeter E E 1961 Phys. Rev. 122 1663
[8] Hagfors T 1961 J. Geophys. Res. 66 1699
[9] Evans J V 1969 Proc. IEEE 57 496
[10] Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128
[11] Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751
[12] Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653
[13] Suvanto K 1988 Radio Sci. 23 989
[14] Suvanto K 1990 Plan. Space Sci. 38 903
[15] Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82
[16] Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 58 736]
[17] Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112
[18] Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335
[19] Gustavsson B 2005 Ann. Geophys. 23 1747
[20] Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857
[21] Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492
[22] Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]
[23] Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702
[24] Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301
[25] Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540
[26] Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117
[27] Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601
计量
- 文章访问数: 6320
- PDF下载量: 183
- 被引次数: 0