搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有跨邻居传播能力的信息辐射模型研究

汪筱阳 王瑛 朱参世 朱琳 傅超琦

引用本文:
Citation:

具有跨邻居传播能力的信息辐射模型研究

汪筱阳, 王瑛, 朱参世, 朱琳, 傅超琦

Information radiation model with across neighbor spread abilities of nodes

Wang Xiao-Yang, Wang Ying, Zhu Can-Shi, Zhu Lin, Fu Chao-Qi
PDF
导出引用
  • 针对大多数信息传播的研究均只考虑邻居的问题,本文提出了一个具有跨邻居传播能力的信息辐射模型.该模型结合复杂网络理论、平均场理论和辐射理论,建立了以物理层为网络结构基础、以辐射层为信息传播环境、以状态层为辐射状态统计的三层信息辐射网络模型.通过定义节点状态之间的转换规则和相关网络统计量,引入辐射范围和辐射衰减量,分析了辐射机理并推导了辐射阈值表达式.在不同的复杂网络中,利用数值仿真验证了理论分析的正确性和模型的有效性,分析了节点之间的状态转换概率和辐射衰减量对信息辐射的影响规律.
    Information is spread as a kind of energy in the network, and it has the ability to spread to nodes that go beyond the neighbors, that is, the information has a radiation effect. However, most of the studies of information dissemination in complex networks only consider the dissemination between neighbors, ignoring that their neighborhood will also be affected by the information radiation. According to this, we propose a new information radiation model with the ability to communicate across neighbors. Firstly, the concepts of information radiation range and radiation attenuation are put forward by combining the theory of complex network and the radiation theory. Secondly, by proposing the hypotheses and analyzing the information content, the nodes in the network are divided into three states:the radiation state, the known state, and the unknown state with the information amount serving as the criterion. At the same time, the transition rules between node states are defined. Thirdly, a three-layer information radiation network model is established based on the physical layer serving as the network structure, the radiation layer as the information dissemination environment, and the state layer as the radiation state statistics. Then, on the basis of the model, the differential equations of the state changes of the nodes are constructed by using the mean field theory and defining the network statistic such as the nth degree, the average nth degree and the nth degree distribution. By analyzing the mechanism of information radiation, the expression of information radiation threshold is deduced by using the differential equation set. Afterwards, the existence of information radiation threshold is proved in each of NW network, BA network, Jazz network, Net-science network, and E-mail network. And the results of numerical simulation and theoretical analysis are well fitted, verifying the correctness of theoretical analysis and the validity of the model. Finally, considering the practical situation of the application, the influences of the state transition probability and the radiation attenuation on the information radiation are analyzed in the BA network by using computer simulation. The results show that the radiation attenuation can stabilize the radiation, and the number of nodes in the initial state of radiation can be increased, which will accelerate the demise of the unknown state nodes but will not increase the number of nodes in the steady state. The results show that increasing the attenuation of the radiation can not only increase the number of radiation nodes in steady stage of radiation, but also speed up the demise of unknown state nodes. And increasing the state transition probability or will affect only the number of the radiation nodes in the initial stage of radiation, also accelerate the demise of the unknown state nodes but will not increase the number of radiation nodes in steady stage of radiation. The analyses of the state transition probability between nodes and the radiation attenuation also prove the correctness of the theoretical analysis.
      通信作者: 汪筱阳, wangxiaoyang1987@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号:71601183,71401174)资助的课题.
      Corresponding author: Wang Xiao-Yang, wangxiaoyang1987@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 71601183, 71401174).
    [1]

    Valerio A, Marco C, Massimiliano L G, Andrea P, Fabio P 2016 Comput. Commun. 76 26

    [2]

    Fu R, Alexander G, Margaret L B 2016 Math. Biosci. 273 102

    [3]

    Kang H, Fu X 2015 Commun. Nonlinear Sci. Numer. Simulat. 27 30

    [4]

    He X S, Zhou M Y, Zhuo Z, Fu Z Q, Liu J G 2015 Physica A 436 658

    [5]

    Yang L X, Yang X 2014 Physica A 396 173

    [6]

    Wang Q, Lin Z, Jin Y, Cheng S, Yang T 2015 Knowledge-Based Systems 81 46

    [7]

    Wang J P, Guo Q, Yang G Y, Liu J G 2015 Physica A 428 250

    [8]

    Xiao Y, Han J 2016 Technological Forecasting Social Change 105 167

    [9]

    Duncan A J, Gunn G J, Umstatter C, Humphry R W 2014 Theor. Popul. Biol. 98 11

    [10]

    Ha J, Kim S W, Kim S W, Faloutsos C, Park S 2015 Inform. Sci. 290 45

    [11]

    Nandi A K, Medal H R 2016 Comput. Oper. Res. 69 10

    [12]

    mit A 2015 J. Magn. Magn. Mater. 386 60

    [13]

    Hou L, Lao S, Small M, Xiao Y 2015 Phys. Lett. A 379 1321

    [14]

    Liu C, Zhou L, Fan C, Huo L, Tian Z 2015 Physica A 432 269

    [15]

    Zhang H F 2015 Ph. D. Dissertation (Beijing:Beijing Jiaotong University) (in Chinese)[张海峰2015博士学位论文(北京:北京交通大学)]

    [16]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014 63 208902]

    [17]

    Wu T F, Zhou C L, Wang X H, Huang X X, Zhan Z Q, Wang R B 2014 Acta Phys. Sin. 63 240501 (in Chinese)[吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波2014 63 240501]

    [18]

    Yu Z, Wang C, Bu J, Wang X, Wu Y, Chen C 2015 Inform. Sci. 309 102

    [19]

    Luo S, Du Y, Liu P, Xuan Z, Wang Y 2015 Expert Syst. Appl. 42 3619

    [20]

    Yi T, Zhu Q X 2014 J. Loss Prevent. Process Ind. 27 130

    [21]

    Wang J, Zhao L, Huang R 2014 Physica A 398 43

    [22]

    Qiu X, Yu L, Zhang D 2015 Neuro Computing 155 247

    [23]

    Choi C W, Xu C, Hui P M 2015 Phys. Lett. A 379 3029

    [24]

    Arkadiusz J, Katarzyna S W, Janusz S 2016 Physica A 446 110

    [25]

    Albert L, Barabasi, Albert R, Jeong H 1999 Physica A 272 173

    [26]

    Li F 2015 J. North Univ. China (Nat. Sci. Ed.) 36 97(in Chinese)[李峰2015中北大学学报(自然科学版) 36 97]

    [27]

    Chen W Y, Jia Z, Zhu G H 2015 J. Univ. Electron. Sci. Technol. China 44 172(in Chinese)[陈玟宇, 贾贞, 祝光湖2015电子科技大学学报44 172]

    [28]

    Qian Z, Tang S, Zhang X, Zheng Z 2015 Physica A 429 95

    [29]

    Li X, Cao L 2016 Physica A 450 624

    [30]

    Xia C, Wang Z, Joaquin S, Sandro M, Yamir M 2013 Physica A 392 1577

    [31]

    Song Y, Jiang G, Gong Y 2013 Chin. Phys. B 22 040205

    [32]

    Li D F, Cao T G, Geng J P, Zhan Y 2015 Acta Phys. Sin. 64 248701 (in Chinese)[李多芳, 曹天光, 耿金鹏, 展永2015 64 248701]

    [33]

    Wang X Y, Wang Y, Zhu L, Li C 2016 Physica A 452 94

    [34]

    Wang X Y, Wang Y, Zhu L 2016 J. Harbin Inst. Technol. 48 166 (in Chinese)[汪筱阳, 王瑛, 朱琳2016哈尔滨工业大学学报48 166]

  • [1]

    Valerio A, Marco C, Massimiliano L G, Andrea P, Fabio P 2016 Comput. Commun. 76 26

    [2]

    Fu R, Alexander G, Margaret L B 2016 Math. Biosci. 273 102

    [3]

    Kang H, Fu X 2015 Commun. Nonlinear Sci. Numer. Simulat. 27 30

    [4]

    He X S, Zhou M Y, Zhuo Z, Fu Z Q, Liu J G 2015 Physica A 436 658

    [5]

    Yang L X, Yang X 2014 Physica A 396 173

    [6]

    Wang Q, Lin Z, Jin Y, Cheng S, Yang T 2015 Knowledge-Based Systems 81 46

    [7]

    Wang J P, Guo Q, Yang G Y, Liu J G 2015 Physica A 428 250

    [8]

    Xiao Y, Han J 2016 Technological Forecasting Social Change 105 167

    [9]

    Duncan A J, Gunn G J, Umstatter C, Humphry R W 2014 Theor. Popul. Biol. 98 11

    [10]

    Ha J, Kim S W, Kim S W, Faloutsos C, Park S 2015 Inform. Sci. 290 45

    [11]

    Nandi A K, Medal H R 2016 Comput. Oper. Res. 69 10

    [12]

    mit A 2015 J. Magn. Magn. Mater. 386 60

    [13]

    Hou L, Lao S, Small M, Xiao Y 2015 Phys. Lett. A 379 1321

    [14]

    Liu C, Zhou L, Fan C, Huo L, Tian Z 2015 Physica A 432 269

    [15]

    Zhang H F 2015 Ph. D. Dissertation (Beijing:Beijing Jiaotong University) (in Chinese)[张海峰2015博士学位论文(北京:北京交通大学)]

    [16]

    Wang Y Q, Wang J, Yang H B 2014 Acta Phys. Sin. 63 208902 (in Chinese)[王亚奇, 王静, 杨海滨2014 63 208902]

    [17]

    Wu T F, Zhou C L, Wang X H, Huang X X, Zhan Z Q, Wang R B 2014 Acta Phys. Sin. 63 240501 (in Chinese)[吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波2014 63 240501]

    [18]

    Yu Z, Wang C, Bu J, Wang X, Wu Y, Chen C 2015 Inform. Sci. 309 102

    [19]

    Luo S, Du Y, Liu P, Xuan Z, Wang Y 2015 Expert Syst. Appl. 42 3619

    [20]

    Yi T, Zhu Q X 2014 J. Loss Prevent. Process Ind. 27 130

    [21]

    Wang J, Zhao L, Huang R 2014 Physica A 398 43

    [22]

    Qiu X, Yu L, Zhang D 2015 Neuro Computing 155 247

    [23]

    Choi C W, Xu C, Hui P M 2015 Phys. Lett. A 379 3029

    [24]

    Arkadiusz J, Katarzyna S W, Janusz S 2016 Physica A 446 110

    [25]

    Albert L, Barabasi, Albert R, Jeong H 1999 Physica A 272 173

    [26]

    Li F 2015 J. North Univ. China (Nat. Sci. Ed.) 36 97(in Chinese)[李峰2015中北大学学报(自然科学版) 36 97]

    [27]

    Chen W Y, Jia Z, Zhu G H 2015 J. Univ. Electron. Sci. Technol. China 44 172(in Chinese)[陈玟宇, 贾贞, 祝光湖2015电子科技大学学报44 172]

    [28]

    Qian Z, Tang S, Zhang X, Zheng Z 2015 Physica A 429 95

    [29]

    Li X, Cao L 2016 Physica A 450 624

    [30]

    Xia C, Wang Z, Joaquin S, Sandro M, Yamir M 2013 Physica A 392 1577

    [31]

    Song Y, Jiang G, Gong Y 2013 Chin. Phys. B 22 040205

    [32]

    Li D F, Cao T G, Geng J P, Zhan Y 2015 Acta Phys. Sin. 64 248701 (in Chinese)[李多芳, 曹天光, 耿金鹏, 展永2015 64 248701]

    [33]

    Wang X Y, Wang Y, Zhu L, Li C 2016 Physica A 452 94

    [34]

    Wang X Y, Wang Y, Zhu L 2016 J. Harbin Inst. Technol. 48 166 (in Chinese)[汪筱阳, 王瑛, 朱琳2016哈尔滨工业大学学报48 166]

  • [1] 李江, 刘影, 王伟, 周涛. 识别高阶网络传播中最有影响力的节点.  , 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [2] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法.  , 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] 苏臻, 高超, 李向华. 节点中心性对复杂网络传播模式的影响分析.  , 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [4] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法.  , 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [5] 闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙). 基于扩展度的复杂网络传播影响力评估算法.  , 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [6] 王金龙, 刘方爱, 朱振方. 一种基于用户相对权重的在线社交网络信息传播模型.  , 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [7] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析.  , 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [8] 吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波. 基于平均场理论的微博传播网络模型.  , 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [9] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型.  , 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [10] 李钊, 徐国爱, 班晓芳, 张毅, 胡正名. 基于元胞自动机的复杂信息系统安全风险传播研究.  , 2013, 62(20): 200203. doi: 10.7498/aps.62.200203
    [11] 任卓明, 刘建国, 邵凤, 胡兆龙, 郭强. 复杂网络中最小K-核节点的传播能力分析.  , 2013, 62(10): 108902. doi: 10.7498/aps.62.108902
    [12] 熊熙, 胡勇. 基于社交网络的观点传播动力学研究.  , 2012, 61(15): 150509. doi: 10.7498/aps.61.150509
    [13] 李树彬, 吴建军, 高自友, 林勇, 傅白白. 基于复杂网络的交通拥堵与传播动力学分析.  , 2011, 60(5): 050701. doi: 10.7498/aps.60.050701
    [14] 王亚奇, 蒋国平. 基于元胞自动机考虑传播延迟的复杂网络病毒传播研究.  , 2011, 60(8): 080510. doi: 10.7498/aps.60.080510
    [15] 宋玉蓉, 蒋国平. 具有非均匀传输和抗攻击差异的网络病毒传播模型.  , 2010, 59(11): 7546-7551. doi: 10.7498/aps.59.7546
    [16] 王亚奇, 蒋国平. 复杂网络中考虑不完全免疫的病毒传播研究.  , 2010, 59(10): 6734-6743. doi: 10.7498/aps.59.6734
    [17] 倪顺江, 翁文国, 范维澄. 具有局部结构的增长无标度网络中传染病传播机制研究.  , 2009, 58(6): 3707-3713. doi: 10.7498/aps.58.3707
    [18] 李明杰, 吴晔, 刘维清, 肖井华. 手机短信息传播过程和短信息寿命研究.  , 2009, 58(8): 5251-5258. doi: 10.7498/aps.58.5251
    [19] 宋玉蓉, 蒋国平. 基于一维元胞自动机的复杂网络恶意软件传播研究.  , 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [20] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究.  , 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
计量
  • 文章访问数:  6153
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-10-12
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map