搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型

张卿 武新军

引用本文:
Citation:

基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型

张卿, 武新军

Analytical modeling for the plate with a flat-bottom hole based on the reflection and transmission theory in pulsed eddy current testing

Zhang Qing, Wu Xin-Jun
PDF
导出引用
  • 针对大多数脉冲涡流检测解析模型假设试件壁厚均匀减薄,其解析解中仅包含z方向(试件厚度)信息,不能求解探头覆盖区等依赖r方向(平行试件表面)信息的问题,本文提出平底孔试件脉冲涡流检测解析模型.该模型在z和r方向均存在介质分界面,边界条件复杂,求解困难.为此,本文首先假设平底孔所在层导体与空气区域的横向波数和纵向波数均相同,且横向波数为仅与r方向结构有关的实数,纵向波数为与该层横向波数和导体区域材料有关的复数,在此假设基础上应用电磁波反射和折射理论,构造各层波动方程;然后通过引入r方向结构系数Wn,将Cheng的矩阵法扩展,用扩展的矩阵法求解波动方程,得到模型的解析表达式.将该模型应用到16MnR平底孔试件检测实例中,并对其进行实验验证.模型计算结果与实验结果基本符合,证明了模型的正确性.平底孔试件脉冲涡流检测解析模型有助于加深对脉冲涡流检测结果的理解,同时能够为r方向逆问题求解提供理论依据.
    Ferromagnetic structures such as pipes or vessels are widely used in petroleum, chemical and power generation industries. Periodical nondestructive testing (NDT) is vital for continued safe operation. As a NDT technology, pulsed eddy current testing (PECT) technology which is excited by a square-wave pulse rather than a sinusoidal waveform has been widely used for its advantages of non-contact and acquisition of information at various depths in one excitation process. In PECT, the analytical modeling is important because it gives a better understanding of the signal and benefits the inverse process of PECT in extracting information of structures. The foundation of theoretical model of PECT is the Dodd-Deeds model presented by Dodd and Deeds in 1968, Theodoulidis and Kriezis represented the integral solution of Dodd-Deeds model in the form of series by using the truncated region eigenfunction expansion (TREE) method. Using the Dodd-Deeds model and the TREE method, other analytical modelings have been solved. However, most modelings assume that the wall thinning of the specimen is uniform, and the analytical solution only contains the variables in the z direction (the direction perpendicular to the surface of the specimen), such as the thickness of the specimen. With the rapid development of PECT, problems such as the footprint of the probe, the quantitative analysis of local wall thinning also need to be solved. These problems are related to the variable in the r direction (the direction parallel to the surface of the specimen), so the analytical modelings mentioned above are not available any more. To solve these problems, the analytical modeling of the plate with a flat-bottom hole is proposed. Considering the fact that the boundary condition in the analytical modeling of the plate with a flat-bottom hole is complicated, the assumption that the transverse wave number and the longitudinal wave number in the layer where the flat-bottom hole located are the same is made in this paper, and the transverse wave number is set to be only related to the structure in the r direction. Firstly, the expressions of magnetic vector potential in all the layers are obtained by using the reflection and refraction theory of electromagnetic wave. Then the analytical solution is solved based on the extended Cheng's matrix method by introducing the construction coefficient Wn. Finally, the 16MnR specimen with the flat bottom holes is conducted as an example, and experiments are carried out. The good agreement between results calculated by the analytical model and the experimental results measured verifies the developed analytical model.
      通信作者: 武新军, xinjunwu@mail.hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFC0801904)和国家自然科学基金(批准号:51077059)资助的课题.
      Corresponding author: Wu Xin-Jun, xinjunwu@mail.hust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0801904) and the National Natural Science Foundation of China (Grant No. 51077059).
    [1]

    Fan M B, Yin Y D, Cao B H 2012 Acta Phys. Sin. 61 088105 (in Chinese)[范孟豹, 尹亚丹, 曹丙花2012 61 088105]

    [2]

    Fu J J, Lei Y Z 2016 J. Sci. Instrum. 37 617 (in Chinese)[付剑津, 雷银照2016仪器仪表学报37 617]

    [3]

    Yang L J, Su J M, Gao S W, Liu B 2016 NDT 40 10 (in Chinese)[杨理践, 孙靖萌, 高松巍, 刘斌2016无损探伤40 10]

    [4]

    Kang X W, Fu Y W 2011 Nondestr. Test. 33 40 (in Chinese)[康小伟, 付跃文2011无损检测33 40]

    [5]

    Wu X J, Zhang Q, Shen G T 2016 J. Sci. Instrum. 37 1698 (in Chinese)[武新军, 张卿, 沈功田2016仪器仪表学报37 1698]

    [6]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [7]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [8]

    Theodoulidis T P, Kriezis E E 2006 Eddy Current Canonical Problems (with applications to nondestructive evaluation) (Forsyth:Tech Science Press) pp93-135

    [9]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese)[范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁2009 58 5950]

    [10]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [11]

    Xu Z Y, Wu X J, Li J, Kang Y H 2012 NDT & E Int. 51 24

    [12]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [13]

    Li J, Wu X J, Zhang Q, Sun P F 2015 NDT & E Int. 75 57

    [14]

    Fu F, Bowler J 2006 IEEE Trans. Magn. 42 2029

    [15]

    Xu Z Y 2012 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[徐志远2012博士学位论文(武汉:华中科技大学)]

    [16]

    Cheng W, Komura I 2012 Proceedings of the 9th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components Seattle, USA, May 22-24, 2012 p336

    [17]

    Wang J, Teng Y P, Fu Y G, Sun M X, Liu Z B, Fan Z Y, Shi K 2013 Nondestr. Test. 35 54 (in Chinese)[王健, 滕永平, 傅迎光, 孙明璇, 刘再斌, 范智勇, 石坤2013无损检测35 54]

    [18]

    Xie S, Chen Z, Takagi T, Uchimoto T 2012 NDT & E Int. 51 45

    [19]

    Bowler J R, Theodoulidis T P 2006 J. Phys. D:Appl. Phys. 39 2862

    [20]

    Theodoulidis T P, Bowler J R 2010 IEEE Trans. Magn. 46 1034

    [21]

    Theodoulidis T P, Bowler J R 2005 Rev. Prog. Quantit. Nondestr. Eval. 24 403

    [22]

    Zhang Q, Wu X J, Li J, Sun P F 2014 Proceedings of the 19th International Workshop on Electromagnetic Nondestructive Evaluation Xi'an, China, June 23-28, 2014 p95

    [23]

    Cheng C C, Dodd C V, Deeds W E 1971 Int. J. Nondestr. Test. 3 109

    [24]

    Feng C Z, Ma X K 2000 An Introduction to Engineering Electromagnetic Fields (Beijing:Higher Education Press) p228(in Chinese)[冯慈璋, 马西奎2000工程电磁场导论(北京:高等教育出版社)第228页]

    [25]

    Yang Z 2009 Ph. D. Dissertation (Shandong:China University of Petroleum) (in Chinese)[杨震2009博士学位论文(山东:中国石油大学)]

    [26]

    Xu Z Y, Wu X J, Huang C, Kang Y H 2011 J. Huazhong Univ. Sci. Techn (Nat. Sci. Ed.) 39 91(in Chinese)[徐志远, 武新军, 黄琛, 康宜华2011华中科技大学学报(自然科学版) 39 91]

    [27]

    Xie M X, Guo J Z, Zhang H B, Chen K 2010 Computer Eng. Sci. 32 92(in Chinese)[谢明霞, 郭建忠, 张海波, 陈科2010计算机工程与科学32 92]

  • [1]

    Fan M B, Yin Y D, Cao B H 2012 Acta Phys. Sin. 61 088105 (in Chinese)[范孟豹, 尹亚丹, 曹丙花2012 61 088105]

    [2]

    Fu J J, Lei Y Z 2016 J. Sci. Instrum. 37 617 (in Chinese)[付剑津, 雷银照2016仪器仪表学报37 617]

    [3]

    Yang L J, Su J M, Gao S W, Liu B 2016 NDT 40 10 (in Chinese)[杨理践, 孙靖萌, 高松巍, 刘斌2016无损探伤40 10]

    [4]

    Kang X W, Fu Y W 2011 Nondestr. Test. 33 40 (in Chinese)[康小伟, 付跃文2011无损检测33 40]

    [5]

    Wu X J, Zhang Q, Shen G T 2016 J. Sci. Instrum. 37 1698 (in Chinese)[武新军, 张卿, 沈功田2016仪器仪表学报37 1698]

    [6]

    Dodd C V, Deeds W E 1968 J. Appl. Phys. 39 2829

    [7]

    Theodoulidis T P, Kriezis E E 2005 J. Mater. Process. Technol. 161 343

    [8]

    Theodoulidis T P, Kriezis E E 2006 Eddy Current Canonical Problems (with applications to nondestructive evaluation) (Forsyth:Tech Science Press) pp93-135

    [9]

    Fan M B, Huang P J, Ye B, Hou D B, Zhang G X, Zhou Z K 2009 Acta Phys. Sin. 58 5950 (in Chinese)[范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁2009 58 5950]

    [10]

    Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301

    [11]

    Xu Z Y, Wu X J, Li J, Kang Y H 2012 NDT & E Int. 51 24

    [12]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [13]

    Li J, Wu X J, Zhang Q, Sun P F 2015 NDT & E Int. 75 57

    [14]

    Fu F, Bowler J 2006 IEEE Trans. Magn. 42 2029

    [15]

    Xu Z Y 2012 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology) (in Chinese)[徐志远2012博士学位论文(武汉:华中科技大学)]

    [16]

    Cheng W, Komura I 2012 Proceedings of the 9th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components Seattle, USA, May 22-24, 2012 p336

    [17]

    Wang J, Teng Y P, Fu Y G, Sun M X, Liu Z B, Fan Z Y, Shi K 2013 Nondestr. Test. 35 54 (in Chinese)[王健, 滕永平, 傅迎光, 孙明璇, 刘再斌, 范智勇, 石坤2013无损检测35 54]

    [18]

    Xie S, Chen Z, Takagi T, Uchimoto T 2012 NDT & E Int. 51 45

    [19]

    Bowler J R, Theodoulidis T P 2006 J. Phys. D:Appl. Phys. 39 2862

    [20]

    Theodoulidis T P, Bowler J R 2010 IEEE Trans. Magn. 46 1034

    [21]

    Theodoulidis T P, Bowler J R 2005 Rev. Prog. Quantit. Nondestr. Eval. 24 403

    [22]

    Zhang Q, Wu X J, Li J, Sun P F 2014 Proceedings of the 19th International Workshop on Electromagnetic Nondestructive Evaluation Xi'an, China, June 23-28, 2014 p95

    [23]

    Cheng C C, Dodd C V, Deeds W E 1971 Int. J. Nondestr. Test. 3 109

    [24]

    Feng C Z, Ma X K 2000 An Introduction to Engineering Electromagnetic Fields (Beijing:Higher Education Press) p228(in Chinese)[冯慈璋, 马西奎2000工程电磁场导论(北京:高等教育出版社)第228页]

    [25]

    Yang Z 2009 Ph. D. Dissertation (Shandong:China University of Petroleum) (in Chinese)[杨震2009博士学位论文(山东:中国石油大学)]

    [26]

    Xu Z Y, Wu X J, Huang C, Kang Y H 2011 J. Huazhong Univ. Sci. Techn (Nat. Sci. Ed.) 39 91(in Chinese)[徐志远, 武新军, 黄琛, 康宜华2011华中科技大学学报(自然科学版) 39 91]

    [27]

    Xie M X, Guo J Z, Zhang H B, Chen K 2010 Computer Eng. Sci. 32 92(in Chinese)[谢明霞, 郭建忠, 张海波, 陈科2010计算机工程与科学32 92]

  • [1] 苏乐, 王彩琳, 谭在超, 罗寅, 杨武华, 张超. 功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立.  , 2024, 73(11): 118501. doi: 10.7498/aps.73.20240144
    [2] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型.  , 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究.  , 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [4] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型.  , 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [5] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型.  , 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [6] 陈兴乐, 雷银照. 导电导磁管道外任意放置线圈激励下脉冲涡流场时域解析解.  , 2014, 63(24): 240301. doi: 10.7498/aps.63.240301
    [7] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型.  , 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [8] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型.  , 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [9] 梁京辉, 张晓锋, 乔鸣忠, 夏益辉, 李耕, 陈俊全. 离散式任意充磁角度Halbach永磁电机解析模型研究.  , 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [10] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析.  , 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [11] 范孟豹, 尹亚丹, 曹丙花. 基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型.  , 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [12] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究.  , 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [13] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型.  , 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [14] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型.  , 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [15] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型.  , 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [16] 范孟豹, 曹丙花, 杨雪锋. 脉冲涡流检测瞬态涡流场的时域解析模型.  , 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [17] 范孟豹, 黄平捷, 叶波, 侯迪波, 张光新, 周泽魁. 基于反射与折射理论的电涡流检测探头阻抗解析模型.  , 2009, 58(9): 5950-5954. doi: 10.7498/aps.58.5950
    [18] 赵新玉, 刚 铁, 张碧星. 基于平底孔反射体的双晶直探头测量模型.  , 2008, 57(8): 5049-5055. doi: 10.7498/aps.57.5049
    [19] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型.  , 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [20] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型.  , 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
计量
  • 文章访问数:  6555
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-10-26
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map