-
利用第一性原理研究了NO分子对[(NO)2]分子链、分子单层膜,Rh(111)表面上的(NO)2分子单层膜和多层膜的原子结构.(NO)2分子单体在虚拟Rh(111)表面自组装成两个稳定的分子链,(NO)2分子平行有序排列,氧原子和氮原子都呈现(100)和(111)结构.在虚拟Rh(111)-(13)上,1.00 ML(molecular layer)覆盖度时,(NO)2分子自组装成两个稳定的分子单层膜(M1和M2),分子膜M1中NN键与衬底的夹角为7090;分子膜M2中NN键平行衬底.在M2/Rh(111)中,(NO)2分子可吸附于顶位、fcc空心位和hcp空心位,通过电荷转移可解释两个空心位的稳定性强于顶位.Rh(111)表面(NO)2分子多层膜系统中,(NO)2分子垂直吸附于两个空心位,第一层是分子膜M2,NN键平行于衬底,第二层及以上都是分子膜M1,NN键与衬底夹角为7090,分子膜真空层为0.31 nm0.02 nm.Molecular self-assembly is the spontaneous organization of molecules under thermodynamic equilibrium conditions into well-defined arrangements via cooperative effects between chemical bonds and weak noncovalent interactions. Molecules undergo self-association without external instruction to form hierarchical structures. Molecular self-assembly is ubiquitous in nature and has recently emerged as a new strategy in chemical biosynthesis, polymer science and engineering. NO monomer is apt to be absorbed on the surfaces of some metals such as Ir(111), Ni(111), Pd(111), Pt(111), Rh(111) and Au(111), and the interactions of NO monomer with the metal surfaces have been extensively studied. When NO monomer is weakly adsorbed on the noble-metal surface, it cannot be reduced completely but forms a stable structure, which is named NO dimer. The first-principle technique is employed to determine the structures of NO dimer ((NO)2) molecular chains and monolayers on virtual Rh(111), as well as (NO)2 monolayer and multilayer on Rh(111). First, (NO)2 monomers are assembled into two stable molecular chains on the virtual Rh(111) surface, whose bind energies are 0.309 and 0.266 eV, respectively. The molecular chains are self-assembly systems, in which (NO)2 monomers are parallel and ordered, and the O atoms and N atoms are shown to be of (100) and (111) structures, respectively. Then, the two molecular chains are assembled into two stable monolayers (denoted as M1 and M2) on the virtual Rh(111)-(13), and the coverage is 1.00 ML. In the M1 monolayer, the angle between the NN bond of (NO)2 monomer and the substrate is in a range of 70-90, and in the M2 monolayer, the NN bond is parallel to the substrate.In the adsorption system of M2/Rh(111), (NO)2 molecules can be adsorbed on the top as well as the hcp and fcc hollow sites. When (NO)2 molecules are adsorbed on the top site, the adsorption system is best described by the electron structure Rh+0.14N0=O-0.14, and when (NO)2 molecules are absorbed on the two hollow sites, the adsorption system is described by the electron structure Rh+0.34N-0.18=O-0.16. Therefore, (NO)2 molecules are more apt to be adsorbed on the two hollow sites than on the top site. In the adsorption systems of M1+M2/Rh(111) and M1+(M1+M2)/Rh(111), (NO)2 molecules are adsorbed vertically on the two hollow sites, the NN bond is parallel to the substrate in the first monolayer, and the angle between the NN bond and the substrate is in a range of 70-90 in the second and third monolayers. The interaction between the neighbor monolayers is about 0.01 eV, and the thickness of the vacuum layer is 0.31 nm0.02 nm.
-
Keywords:
- NO dimer /
- monolayer /
- multilayer /
- self-assembly
[1] Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312
[2] Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688
[3] Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720
[4] Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]
[5] Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]
[6] Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524
[7] Orville-Thomas W J 1954 J. Chem. Phys. 22 1267
[8] Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679
[9] Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15
[10] Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245
[11] Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235
[12] Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701
[13] Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404
[14] Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502
[15] Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865
[17] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]
[18] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399
[19] Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425
[20] Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1
[21] Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158
[22] Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534
[23] Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215
[24] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
-
[1] Whitesides G M, Mathias J P, Seto C T 1991 Science 254 1312
[2] Hickman J J, Ofer D, Laibinis P E, Whitesides G M, Wrighton M S 1991 Science 252 688
[3] Fujita M, Ibukuro F, Hagihara H, Ogura K 1994 Nature 367 720
[4] Wang W, Huang L, Zhang Y, Li C M, Zhang H Q, Gu N, Peng L, Zhao L X, Shen H Y, Chen T S, Hao L P 2002 Acta Phys. Sin. 51 63 (in Chinese)[王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 彭力, 赵丽新, 沈浩瀛, 陈堂生, 郝丽萍2002 51 63]
[5] Hu H L, Zhang K, Wang Z X, Kong T, Hu Y, Wang X P 2007 Acta Phys. Sin. 56 1674 (in Chinese)[胡海龙, 张琨, 王振兴, 孔涛, 胡颖, 王晓平2007 56 1674]
[6] Palmer R M J, Ferrige A G, Moncada 1987 Nature 327 524
[7] Orville-Thomas W J 1954 J. Chem. Phys. 22 1267
[8] Root T W, Fisher G B, Schmidt L D 1986 J. Chem. Phys. 85 4679
[9] Loffreda D, Simon D, Sautet P 1998 Chem. Phys. Lett. 291 15
[10] Wallace W T, Cai Y, Chen M S, Goodman D W 2006 J. Phys. Chem. B 110 6245
[11] Nakamura I, Kobayashi Y, Hamada H, Fujitani T 2006 Surf. Sci. 600 3235
[12] Nakai I, Kondoh H, Shimada T, Yokota R, Katayama T, Ohta T 2007 J. Chem. Phys. 127 024701
[13] Jansen A P J, Popa C 2008 Phys. Rev. B 78 085404
[14] Wu T Q, Zhu P, Jiao Z W 2012 Appl. Surf. Sci. 263 502
[15] Brown W A, Gardner P, King D A 1995 J. Phys. Chem. 99 7065
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 78 3865
[17] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013 62 186301]
[18] Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399
[19] Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425
[20] Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1
[21] Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158
[22] Guo Z H, Yan X H, Xiao Y 2010 Phys. Lett. A 374 1534
[23] Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215
[24] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717
计量
- 文章访问数: 7320
- PDF下载量: 154
- 被引次数: 0