搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态光子晶体中V型三能级原子的自发辐射

邢容 谢双媛 许静平 羊亚平

引用本文:
Citation:

动态光子晶体中V型三能级原子的自发辐射

邢容, 谢双媛, 许静平, 羊亚平

Spontaneous emission from a V-type three-level atom in a dynamic photonic crystal

Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping
PDF
导出引用
  • 研究了动态各向同性光子晶体中V型三能级原子的自发辐射,主要讨论了光子晶体能带带边频率受到阶跃调制和三角函数周期调制两种情况下,调制参数对占据数演化的控制作用,以及此过程中量子相干效应带来的影响.结果表明,阶跃调制时,调制发生后原子上能级劈裂出来的束缚缀饰态数目只取决于原子的跃迁频率和此时的带边频率,且与具有相同参数条件的静态情形下的相同.调制发生时刻对其后原子上能级占据数的长时演化情况有影响.随系统初态的不同,量子相干效应既可导致调制之后占据数迅速衰减,也可使原子上能级保留较多的占据数.三角函数周期调制时,原子上能级总占据数在足够长的时间之后随时间做频率近似等于调制频率的有衰减的准周期振荡.衰减率与调制频率有关,也因量子相干效应而受系统初态以及偶极矩夹角的影响.
    The spontaneous emission from a V-type three-level atom embedded in an isotropic photonic crystal with dynamic photonic band edge is studied. We consider the situation where the atom interacts with all possible radiation modes, and calculate numerically the evolution of atomic population without using Markov approximation. The calculation method can be used in related researches. In the present paper, we mainly discuss the effects of modulation parameters and the quantum interference on spontaneous emission when the band edge is modulated with step function or triangle function. We hope that the results can contribute to the applications in the dynamic photonic crystal environment in controlling the spontaneous emission via the quantum interference. The results show that in the step-modulated situation, the number of the photon-atom bound dressed states after the modulation has happened depends on atomic transition frequencies and the band edge frequency at that time, and is identical to the one in the unmodulated situation with the same parameters. The long-time evolution of the atomic population is affected by the time when the modulation happens. Depending on the system initial state, after the modulation has happened, the quantum interference can weaken the probability amplitude components corresponding to the photon-atom bound dressed states, and cause the upper-level population to decay quickly from a great value to a value near zero; or on the contrary, it can strengthen the bound dressed states, and make the upper levels retain a high population. In the modulated situation with trigonometric functions, after long enough time, the total upper-level population presents a decaying quasi-periodic oscillation behaviour. And the evolution of the total upper-level population tends to synchronize with the modulation, so the frequency of the quasi-periodic oscillation is approximately equal to the modulation frequency. But, the quantum interference can destroy the synchronization under some conditions. The decay rate of the total upper-level population is affected by the modulation frequency, and also by the initial state of the system and the angle between two dipole moment because of the quantum interference.
      通信作者: 谢双媛, xieshuangyuan@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11074188,11274242)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U1330203)和国家重点基础研究计划特别基金(批准号:2011CB922203,2013CB632701)资助的课题.
      Corresponding author: Xie Shuang-Yuan, xieshuangyuan@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11074188, 11274242), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No. U1330203) and the National Key Basic Research Special Foundation of China(NKBRSFC)(Grant Nos. 2011CB922203, 2013CB632701).
    [1]

    Scully M O, Zubairy M S 1997 Quantum Optics(Cambridge:Cambridge University Press) Chapter 7

    [2]

    Fleischhauer M, Imamoglu A, Marangos J 2005 Rev. Mod. Phys. 77 633

    [3]

    Zhu S Y, Chan R C F, Lee C P 1995 Phys. Rev. A 52 710

    [4]

    Paspalakis E, Kylstra N J, Knight P L 1999 Phys. Rev. A 60 R33

    [5]

    Angelakis D G, Paspalakis E, Knight P L 2001 Phys. Rev. A 64 013801

    [6]

    Du C G, Hu Z F, Hou C F, Li S Q 2002 Chin. Phys. Lett. 19 338

    [7]

    Yang Y P, Zhu S Y, Zubairy M S 1999 Opt. Commun. 166 79

    [8]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [9]

    Yang Y P, Zhu S Y 2000 J. Mod. Opt. 47 1513

    [10]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [11]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486

    [13]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [14]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [15]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [16]

    Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese)[羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔1999 48 603]

    [17]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [18]

    Quang T, Woldeyohannes M, John S, Agarwal G S 1997 Phys. Rev. Lett. 79 5238

    [19]

    Wang X H, Gu B Y 2005 Appl. Phys. Lett. 86 051103

    [20]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [21]

    Liu S Y, Du J J, Lin Z F, Wu R X, Chui S T 2008 Phys. Rev. B 78 155101

    [22]

    Manzanares-Martinez J, Ramos-Mendieta F, Halevi P 2005 Phys. Rev. B 72 035336

    [23]

    Hu X Y, Zhang Q, Liu Y H, Cheng B Y, Zhang D Z 2003 Appl. Phys. Lett. 83 2518

    [24]

    Leonard S W, van Driel H M, Schilling J, Wehrspohn R B 2002 Phys. Rev. B 66 161102

    [25]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 5835 (in Chinese)[贾飞, 谢双媛, 羊亚平2006 55 5835]

    [26]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [27]

    Yang Y P, Xu J P, Li G X, Chen H 2004 Phys. Rev. A 69 053406

    [28]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095

    [29]

    Linington I E, Garraway B M 2006 J. Phys. B:At. Mol. Opt. Phys. 39 3383

    [30]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [31]

    Kofman A G, Kurizki G 2001 Phys. Rev. Lett. 87 270405

    [32]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations(Philadelphia:Society for Industrial and Applied Mathematics) Chapter 7

    [33]

    Xia H R, Ye C Y, Zhu S Y 1996 Phys. Rev. Lett. 77 1032

  • [1]

    Scully M O, Zubairy M S 1997 Quantum Optics(Cambridge:Cambridge University Press) Chapter 7

    [2]

    Fleischhauer M, Imamoglu A, Marangos J 2005 Rev. Mod. Phys. 77 633

    [3]

    Zhu S Y, Chan R C F, Lee C P 1995 Phys. Rev. A 52 710

    [4]

    Paspalakis E, Kylstra N J, Knight P L 1999 Phys. Rev. A 60 R33

    [5]

    Angelakis D G, Paspalakis E, Knight P L 2001 Phys. Rev. A 64 013801

    [6]

    Du C G, Hu Z F, Hou C F, Li S Q 2002 Chin. Phys. Lett. 19 338

    [7]

    Yang Y P, Zhu S Y, Zubairy M S 1999 Opt. Commun. 166 79

    [8]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [9]

    Yang Y P, Zhu S Y 2000 J. Mod. Opt. 47 1513

    [10]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [11]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486

    [13]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [14]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [15]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [16]

    Yang Y P, Lin Z X, Xie S Y, Feng W G, Wu X 1999 Acta Phys. Sin. 48 603 (in Chinese)[羊亚平, 林志新, 谢双媛, 冯伟国, 吴翔1999 48 603]

    [17]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [18]

    Quang T, Woldeyohannes M, John S, Agarwal G S 1997 Phys. Rev. Lett. 79 5238

    [19]

    Wang X H, Gu B Y 2005 Appl. Phys. Lett. 86 051103

    [20]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [21]

    Liu S Y, Du J J, Lin Z F, Wu R X, Chui S T 2008 Phys. Rev. B 78 155101

    [22]

    Manzanares-Martinez J, Ramos-Mendieta F, Halevi P 2005 Phys. Rev. B 72 035336

    [23]

    Hu X Y, Zhang Q, Liu Y H, Cheng B Y, Zhang D Z 2003 Appl. Phys. Lett. 83 2518

    [24]

    Leonard S W, van Driel H M, Schilling J, Wehrspohn R B 2002 Phys. Rev. B 66 161102

    [25]

    Jia F, Xie S Y, Yang Y P 2006 Acta Phys. Sin. 55 5835 (in Chinese)[贾飞, 谢双媛, 羊亚平2006 55 5835]

    [26]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [27]

    Yang Y P, Xu J P, Li G X, Chen H 2004 Phys. Rev. A 69 053406

    [28]

    Law C K, Zhu S Y, Zubairy M S 1995 Phys. Rev. A 52 4095

    [29]

    Linington I E, Garraway B M 2006 J. Phys. B:At. Mol. Opt. Phys. 39 3383

    [30]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [31]

    Kofman A G, Kurizki G 2001 Phys. Rev. Lett. 87 270405

    [32]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations(Philadelphia:Society for Industrial and Applied Mathematics) Chapter 7

    [33]

    Xia H R, Ye C Y, Zhu S Y 1996 Phys. Rev. Lett. 77 1032

  • [1] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性.  , 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [2] 秦黎, 李泽亚, 许静平, 张利伟, 羊亚平. 磁单负材料板附近的原子的自发辐射场分布.  , 2015, 64(1): 014206. doi: 10.7498/aps.64.014206
    [3] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射.  , 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [4] 李明. 原子玻色-爱因斯坦凝聚体对V型三能级原子激光压缩性质的影响.  , 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [5] 李明, 唐涛, 陈鼎汉. V型三能级原子双模光场系统中光场压缩性质.  , 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [6] 张琴, 金康, 唐远河, 屈光辉. V形三能级原子的辐射压力和激光冷却.  , 2011, 60(5): 053204. doi: 10.7498/aps.60.053204
    [7] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控.  , 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [8] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性.  , 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [9] 鄢嫣, 魏巧, 李高翔. 非线性光子晶体中原子辐射光场的非经典性质.  , 2010, 59(4): 2505-2511. doi: 10.7498/aps.59.2505
    [10] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠.  , 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [11] 陈 峻, 刘正东, 郑 军, 方慧娟. 基于量子干涉效应的四能级原子系统中的vacuum-induced coherence效应.  , 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [12] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响.  , 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [13] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质.  , 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [14] 谭 荣, 李高翔. 低频强场作用下三维光子晶体中二能级原子的自发辐射性质.  , 2005, 54(5): 2059-2065. doi: 10.7498/aps.54.2059
    [15] 黄春佳, 贺慧勇, 孔凡志, 方家元. 光场与V型三能级原子依赖强度耦合系统场熵的演化特性.  , 2004, 53(8): 2539-2543. doi: 10.7498/aps.53.2539
    [16] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度.  , 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
    [17] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制.  , 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [18] 陈 三, 谢双媛, 羊亚平, 陈 鸿. 双能带三维光子晶体中二能级原子的自发辐射.  , 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
    [19] 谢双媛, 羊亚平, 吴 翔. 三维光子晶体中三能级原子的自发发射.  , 2000, 49(8): 1478-1483. doi: 10.7498/aps.49.1478
    [20] 赖振讲, 刘自信. 附加Kerr介质非关联双模相干态场与V型三能级原子的相互作用系统中原子(场)的熵特性.  , 2000, 49(9): 1714-1718. doi: 10.7498/aps.49.1714
计量
  • 文章访问数:  6163
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-10-12
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map