搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于比热的完全物态方程

范小兵 陈俊祥 向士凯

引用本文:
Citation:

基于比热的完全物态方程

范小兵, 陈俊祥, 向士凯

Complete equation of state based on specific heat

Fan Xiao-Bing, Chen Jun-Xiang, Xiang Shi-Kai
PDF
导出引用
  • 在热力学中,一个封闭体系的完全物态方程指由两个状态量为自变量所确定的一种函数关系,由这个关系能够导出所有其他热力学量之间的关系.比如亥姆霍兹自由能F表示为体系的比体积v和温度T的函数F(v,T)时,就是这种完全物态方程.但是这种完全物态方程至今没有实际计算的表达式.我们以等温压强函数pT(v)和建立在德拜模型基础上的定容比热函数Cv(v,T)为基础,建立了一个有具体函数表达式的完全物态方程.用这种完全物态方程对几种固体金属材料进行了实际计算,所导出的热力学状态量和物性参数,与实验测量能够比较好地符合.这种完全物态方程在高温高压物理领域具有一定的应用价值.
    In thermodynamics, the complete equation of state (EOS) for closed system is a functional relation defined by two independent state variables, and all other thermodynamic relations can be deduced by it. For example, Helmholtz free energy F as a function of specific volume v and temperature T of the system is a complete EOS. Unfortunately, the concrete expressions of these complete EOSs are unavailable. Here we establish a practical form of the complete EOS based on the pressure function pT(v) and constant-volume specific heat function Cv(v,T) This complete EOS is mathematically equivalent to the Helmholtz free energy F. Here pT(v) is determined by the measurement and Cv(v,T) can be expressed by two parts. One part is the lattice contribution based on the Debye model and the other part is electronic contribution obtained from the free electron model. Using this complete EOS we calculate the isothermal equation for six metals from the Hugoniot data. Good agreement between the isothermal equation and the experimental data verifies the reliability of the complete EOS. Through this complete EOS we can derive the concrete expression of physical parameters, and these physical parameters including the volume expansion coefficient, the volume speed of sound, the adiabatic modulus, and W-J coefficient are calculated by using the experimental data of Cu. Analyzing their variation trends we can timely adjust parameter in the calculation of the EOS. This kind of complete EOS is useful in the field of high temperature and high pressure physics.
      通信作者: 向士凯, skxiang@caep.cn
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号:2015B0101004)和冲击波与爆轰物理重点实验室基金(批准号:9140C670201140C67282)资助的课题.
      Corresponding author: Xiang Shi-Kai, skxiang@caep.cn
    • Funds: Project supported by the Program of the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0101004) and the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C670201140C67282).
    [1]

    Jing F Q 1999 Introduction to Experimental Equation of State(2nd Ed.) (Beijing:Science Press) p398(in Chinese)[经福谦1999实验物态方程导引(第二版)(北京:科学出版社)第398页]

    [2]

    Chen J X, Jin K, Wu Q 2014 Chin. J. High Pres. Phys. 28 293 (in Chinese)[陈俊祥, 金柯, 吴强2014高压 28 293]

    [3]

    Chen J X, Yu J D, Li P, He H L 2015 Acta Phys. Sin. 64 086401 (in Chinese)[陈俊祥, 于继东, 李平, 贺红亮2015 64 086401]

    [4]

    Anderson O L 2000 Geophys. J. Int. 143 279

    [5]

    Wu Q 2004 Ph. D. Dissertation (Mianyang:China Acedemy of Engineering Physics) (in Chinese)[吴强2004博士学位论文(绵阳:中国工程物理研究院)]

    [6]

    Song P, Cai L C 2009 Acta Phys. Sin. 58 1879 (in Chinese)[宋萍, 蔡灵仓2009 58 1879]

    [7]

    Zhang D, Sun J X 2012 Chin. Phys. B 21 080508

    [8]

    Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 63 206501 (in Chinese)[翟东, 韦昭, 冯志芳, 邵晓红, 张平2014 63 206501]

    [9]

    Chen J X 2012 Appl. Phys. 2 77 (in Chinese)[陈俊祥2012应用物理2 77]

    [10]

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of State(Beijing:Science Press) p292(in Chinese)[徐锡申, 张万箱1985实用物态方程理论导引(北京:科学出版社)第292页]

    [11]

    Agnes D, Paul L, and Mohamed M 2004 Phys. Rev. B 70 094112

    [12]

    Marsh S P 1980 LASL Shock H goniot Data (Berkeley American:University of California Press) p57

    [13]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

  • [1]

    Jing F Q 1999 Introduction to Experimental Equation of State(2nd Ed.) (Beijing:Science Press) p398(in Chinese)[经福谦1999实验物态方程导引(第二版)(北京:科学出版社)第398页]

    [2]

    Chen J X, Jin K, Wu Q 2014 Chin. J. High Pres. Phys. 28 293 (in Chinese)[陈俊祥, 金柯, 吴强2014高压 28 293]

    [3]

    Chen J X, Yu J D, Li P, He H L 2015 Acta Phys. Sin. 64 086401 (in Chinese)[陈俊祥, 于继东, 李平, 贺红亮2015 64 086401]

    [4]

    Anderson O L 2000 Geophys. J. Int. 143 279

    [5]

    Wu Q 2004 Ph. D. Dissertation (Mianyang:China Acedemy of Engineering Physics) (in Chinese)[吴强2004博士学位论文(绵阳:中国工程物理研究院)]

    [6]

    Song P, Cai L C 2009 Acta Phys. Sin. 58 1879 (in Chinese)[宋萍, 蔡灵仓2009 58 1879]

    [7]

    Zhang D, Sun J X 2012 Chin. Phys. B 21 080508

    [8]

    Zhai D, Wei Z, Feng Z F, Shao X H, Zhang P 2014 Acta Phys. Sin. 63 206501 (in Chinese)[翟东, 韦昭, 冯志芳, 邵晓红, 张平2014 63 206501]

    [9]

    Chen J X 2012 Appl. Phys. 2 77 (in Chinese)[陈俊祥2012应用物理2 77]

    [10]

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of State(Beijing:Science Press) p292(in Chinese)[徐锡申, 张万箱1985实用物态方程理论导引(北京:科学出版社)第292页]

    [11]

    Agnes D, Paul L, and Mohamed M 2004 Phys. Rev. B 70 094112

    [12]

    Marsh S P 1980 LASL Shock H goniot Data (Berkeley American:University of California Press) p57

    [13]

    Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363

  • [1] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程.  , 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] 卢琪, 陈伟杰, 陆振烟, 许英, 李向前. 同位旋非对称强作用物质状态方程及热力学性质.  , 2021, 70(14): 145101. doi: 10.7498/aps.70.20210132
    [3] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究.  , 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [4] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质.  , 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [5] 张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 基于Helmholtz自由能模型的聚乙烯的完全物态方程.  , 2017, 66(5): 056501. doi: 10.7498/aps.66.056501
    [6] 王坤, 史宗谦, 石元杰, 吴坚, 贾申利, 邱爱慈. 基于Thomas-Fermi-Kirzhnits模型的物态方程研究.  , 2015, 64(15): 156401. doi: 10.7498/aps.64.156401
    [7] 陈俊祥, 于继东, 李平, 贺红亮. Grneisen γ通用函数及完全物态方程.  , 2015, 64(8): 086401. doi: 10.7498/aps.64.086401
    [8] 张学军, 饶坚, 邓杨保, 蒋练军, 田野. 单势阱粒子溢流模型中热力学量的涨落效应.  , 2014, 63(19): 193601. doi: 10.7498/aps.63.193601
    [9] 于继东, 李平, 王文强, 吴强. 金属铝固液气完全物态方程研究.  , 2014, 63(11): 116401. doi: 10.7498/aps.63.116401
    [10] 姬广富, 张艳丽, 崔红玲, 李晓凤, 赵峰, 孟川民, 宋振飞. 从头算方法研究面心立方铝在高温高压下的热力学状态方程.  , 2009, 58(6): 4103-4108. doi: 10.7498/aps.58.4103
    [11] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算.  , 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [12] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究.  , 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [13] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究.  , 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] 刘晓莹. Taub-NUT时空视界附近自旋场的热力学量.  , 2007, 56(8): 4337-4341. doi: 10.7498/aps.56.4337
    [15] 王彩霞, 田杨萌, 姜 明, 程新路, 杨向东, 孟川民. 一种计算氩等离子物态方程的简单模型.  , 2006, 55(11): 5784-5789. doi: 10.7498/aps.55.5784
    [16] 刘晓莹, 张 甲. 广义不确定关系与黑洞附近的热力学量.  , 2006, 55(11): 5638-5642. doi: 10.7498/aps.55.5638
    [17] 李晓杰. 热膨胀型固体物态方程.  , 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
    [18] 耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示.  , 2001, 50(7): 1334-1339. doi: 10.7498/aps.50.1334
    [19] 徐继海. CeCu2Si2和UBe13的超导理论(Ⅱ)——热力学量的计算.  , 1988, 37(1): 111-118. doi: 10.7498/aps.37.111
    [20] 程开甲. 内耗的热力学研究(Ⅰ).  , 1955, 11(2): 163-178. doi: 10.7498/aps.11.163
计量
  • 文章访问数:  6996
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-03
  • 修回日期:  2016-08-29
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map