搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子多光子激发对电离阈值附近谐波发射的影响

张頔玉 李庆仪 郭福明 杨玉军

引用本文:
Citation:

原子多光子激发对电离阈值附近谐波发射的影响

张頔玉, 李庆仪, 郭福明, 杨玉军

The influences of multiphoton excitation on near-threshold Harmonic emission in atoms

Zhang Di-Yu, Li Qing-Yi, Guo Fu-Ming, Yang Yu-Jun
PDF
导出引用
  • 基于动量空间和坐标空间含时伪谱方法,通过求解氢原子在强激光作用下的含时薛定谔方程,系统地研究了原子在强激光作用下电离阈值附近的高次谐波发射随着激光电场强度的变化关系.研究发现,随着入射激光强度的增加,九次谐波发射效率呈现周期性振荡结构.结合原子的激发几率计算,发现电离阈值附近的谐波增强与高激发态的布居存在相互竞争关系.
    When an atom or a molecule interacts with an intense laser field, a coherent high-order harmonic emission is observed at a frequency that is an integer multiple magnitude of the initial frequency of the incident laser field. The harmonic emission has the characteristic of high emission efficiency at relatively high orders, and it also has a wide expansion in the frequency domain. Thus, the high-order harmonic generation can be utilized to generate coherent EUV or soft X-ray light sources as well as ultrashort at to second laser pulses. It is promising that the attosecond laser pulse will be an important tool for detecting and controlling the electron dynamics in atom and molecule systems. The mechanisms of high-order harmonics especially the high energy part of the harmonic spectrum can be explained by the well-known three-step model. The three-step model assumes that the electron in the bound state firstly are ionized by the potential barrier formed by the laser electric field and the atomic potential, then the ionized electrons oscillate in the laser field, and finally the electron with high kinetic energy gained in the laser field has the possibility to return back to the parent ion and recombines with the ground state of the system with a high energy photon emitted. As for harmonics with low orders, especially those with single photon energy near the ionization threshold, the Coulomb potential of the atom has significant influences on them. However,the effect of the Coulomb potential of the atom are not included in the three-step model, so the mechanism of near-threshold harmonics (NTH) cannot be clearly interpreted with the three-step model alone. In this circumstance, the study of the mechanism of near-threshold harmonic emission attracted people's attention in general. One important application of NTH is that it can be utilized to generate optical comb with EUV frequencies. Theoretically, Xiong et al. studied the mechanism of below-threshold harmonic (BTH) emission and found that the mechanism of this part of harmonics include the effect of the quantum-path interference and the Coulomb potential. He et al. analyzed the emission of BTH in various laser intensity regions and found that the harmonic spectrum exhibits a periodic structure as a function of the harmonic frequency when the incident laser intensity is about 1013 W/cm2. Utilizing the quantum-path and time-frequency analyses of the harmonic emission, He et al. indicated that this periodic structure can be attributed to the interference effect between two specific quantum paths. Li et al. adopted the synchrosqueezing scheme to study the near-and below-threshold harmonic emission of Cs atoms in an intense mid-infrared laser field and they showed that the multiphoton and the multiple rescattering trajectories have an effect on the NTH and BTH generation processes. Shafir et al. found that the ionic potential plays an critical role in NTH emission. Under the interaction between the atom and the intense laser field, electron in the ground state not only can be ionized but also be pumped into excited state, and these excitation processes also affect the harmonic emission. We studied the harmonic emission process near the ionization threshold by solving the time-dependent Schrdinger equation of an atom interacting with a strong laser field. Utilizing the obtained wavefunction, we systematically studied the high-order harmonic emission with the variation of the incident laser intensity. Meanwhile, through solving the TDSE with the momentum-space method, the excited-state population is precisely calculated and achieved. We show that the ninth harmonic exhibits a periodic oscillation structure with the intensity of the incident laser field increasing, and we reveals that there is a synchronous variation between the harmonic intensity and the relatively high bound state population.Within a certain range of laser intensity, the increase of the total population of the excited states corresponds to the low efficiency of harmonic emission, and this competition relationship is quite clear. Therefore, when the wavelength of the driving laser pulse is fixed, we can optimize the driving laser intensity to achieve the near-threshold harmonic emission with high efficiency.
      通信作者: 杨玉军, yangyj@jlu.edu.cn
    • 基金项目: 国家重点基础研究计划(批准号:2013CB922200)、国家自然科学基金(批准号:11274141,11264001,11304116,11534004,11627807)和吉林省自然科学基金(批准号:20140101168JC)资助的课题.
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grants Nos. 11274141, 11264001, 11304116, 11534004, 11627807), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20140101168JC).
    [1]

    Li X F, L'Huillier A, Ferry M, Lompre L A, Mainfray 1989Phys. Rev. A 39 5751

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1992Adv. At. Mol. Opt. Phys. Suppl 1 139

    [3]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004Chin. Phys. Lett. 21 652

    [4]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [5]

    Paul P M, Toma E S, Breger P 2001Science 292 1689

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012Nature 483 194

    [9]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [10]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013Phys. Rev. A 87 063418

    [11]

    Corkum P B, Krausz F 2007Nat. Phys. 3 381

    [12]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [13]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2015Nat. Commun. 6 7178

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014Phys. Rev. Lett. 112 233001

    [15]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015Phys. Rev. A 91 023428

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Haslar J, Telnov D A, Chu S I, Chang Z H 2014Nat. Photon. 8 437

    [17]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009Nat. Phys. 5 815

    [18]

    Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Maurisson J, Johnsson P, Arnold C L, L'Huillier A 2013Sci. Rep. 3 1410

    [19]

    Shafir D, Fabre B, Higuet J, Soifer H, Dagan M, Descamps D, Mevel E, Petit S, Wörner H J, Pons B, Dudovich N, Mairesse Y 2012Phys. Rev. Lett. 108 203001

    [20]

    Tian Y Y, Wang C C, Li S Y, Guo F M, Ding D J, Roeterdink W G, Chen J G, Zeng S L, Liu X S, Yang Y J 2015Chin. Phys. B 24 043202

    [21]

    Tong X M, Chu S I 1997Chem. Phys. 217 119

    [22]

    Zhou Z Y, Chu S I 2011Phys. Rev. A 83 013405

    [23]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [24]

    Wang C C, Tian Y Y, Luo S Z, Roeterdink W G, Yang Y J, Ding D J, Okunishi M, Prumper G, Shimada K, Ueda K, Zhu R H 2014Phys. Rev. A 90 023405

    [25]

    Landau R H 1983Phys. Rev. C 27 2191

    [26]

    Raekwon Y, Tabakin F 1978Phys. Rev. C 18 932

  • [1]

    Li X F, L'Huillier A, Ferry M, Lompre L A, Mainfray 1989Phys. Rev. A 39 5751

    [2]

    L'Huillier A, Lompre L A, Mainfray G, Manus C 1992Adv. At. Mol. Opt. Phys. Suppl 1 139

    [3]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004Chin. Phys. Lett. 21 652

    [4]

    Kohler M C, Pfeifer T, Hatsagortsyan K Z, Keitel C H 2012Adv. At. Mol. Opt. Phys. 61 159

    [5]

    Paul P M, Toma E S, Breger P 2001Science 292 1689

    [6]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D 2008Science 320 1478

    [7]

    Wang J, Chen G, Guo F M, Li S Y, Chen J G, Yang Y J 2013Chin. Phys. B 22 033203

    [8]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012Nature 483 194

    [9]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [10]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013Phys. Rev. A 87 063418

    [11]

    Corkum P B, Krausz F 2007Nat. Phys. 3 381

    [12]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [13]

    Li P C, Sheu Y L, Laughlin C, Chu S I 2015Nat. Commun. 6 7178

    [14]

    Xiong W H, Geng J W, Tang J Y, Peng L Y, Gong Q H 2014Phys. Rev. Lett. 112 233001

    [15]

    He L X, Lan P F, Zhai C Y, Li Y, Wang Z, Zhang Q B, Lu P X 2015Phys. Rev. A 91 023428

    [16]

    Chini M, Wang X W, Cheng Y, Wang H, Wu Y, Cunningham E, Li P C, Haslar J, Telnov D A, Chu S I, Chang Z H 2014Nat. Photon. 8 437

    [17]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009Nat. Phys. 5 815

    [18]

    Brizuela F, Heyl C M, Rudawski P, Kroon D, Rading L, Dahlstrom J M, Maurisson J, Johnsson P, Arnold C L, L'Huillier A 2013Sci. Rep. 3 1410

    [19]

    Shafir D, Fabre B, Higuet J, Soifer H, Dagan M, Descamps D, Mevel E, Petit S, Wörner H J, Pons B, Dudovich N, Mairesse Y 2012Phys. Rev. Lett. 108 203001

    [20]

    Tian Y Y, Wang C C, Li S Y, Guo F M, Ding D J, Roeterdink W G, Chen J G, Zeng S L, Liu X S, Yang Y J 2015Chin. Phys. B 24 043202

    [21]

    Tong X M, Chu S I 1997Chem. Phys. 217 119

    [22]

    Zhou Z Y, Chu S I 2011Phys. Rev. A 83 013405

    [23]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [24]

    Wang C C, Tian Y Y, Luo S Z, Roeterdink W G, Yang Y J, Ding D J, Okunishi M, Prumper G, Shimada K, Ueda K, Zhu R H 2014Phys. Rev. A 90 023405

    [25]

    Landau R H 1983Phys. Rev. C 27 2191

    [26]

    Raekwon Y, Tabakin F 1978Phys. Rev. C 18 932

  • [1] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱.  , 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [2] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响.  , 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [3] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制.  , 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [4] 刘艳, 郭福明, 杨玉军. 高次谐波发射的亚原子尺度研究.  , 2019, 68(17): 173202. doi: 10.7498/aps.68.20190790
    [5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应.  , 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [6] 滕欢, 柴路, 王清月, 胡明列. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波.  , 2017, 66(4): 044205. doi: 10.7498/aps.66.044205
    [7] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [8] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构.  , 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [9] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生.  , 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [10] 葛愉成. 高次谐波辐射发射特性研究.  , 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [11] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究.  , 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [12] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究.  , 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [13] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [14] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究.  , 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [15] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响.  , 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [16] 戴 瑛, 丁世良. 用二次型非谐振子模型研究强激光场中双原子分子的多光子选择激发.  , 1998, 47(6): 922-930. doi: 10.7498/aps.47.922
    [17] 陆庆正, 丁传凡, 高建谧, 孔繁敖. SiH4紫外多光子电离光谱的转动分析.  , 1991, 40(1): 39-42. doi: 10.7498/aps.40.39
    [18] 刘厚祥, 李昭临, 李书涛, 韩景诚, 吴存恺. 甲醛的态选择性多光子电离研究.  , 1988, 37(3): 470-474. doi: 10.7498/aps.37.470
    [19] 朱荣, 韩景诚, 关一夫, 刘厚祥, 李书涛, 吴存恺. 乙醛紫外多光子电离动力学研究.  , 1987, 36(4): 459-466. doi: 10.7498/aps.36.459
    [20] 余玮, 徐至展. CO2激光打靶中的高次谐波发射.  , 1987, 36(2): 224-229. doi: 10.7498/aps.36.224
计量
  • 文章访问数:  5871
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-01
  • 修回日期:  2016-11-02
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map