搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于累积量标准差的超分辨光学涨落成像解卷积优化

王雪花 陈丹妮 于斌 牛憨笨

引用本文:
Citation:

基于累积量标准差的超分辨光学涨落成像解卷积优化

王雪花, 陈丹妮, 于斌, 牛憨笨

Deconvolution optimization in super-resolution optical fluctuation imaging based on cumulant standard deviation

Wang Xue-Hua, Chen Dan-Ni, Yu Bin, Niu Han-Ben
PDF
导出引用
  • 超分辨光学涨落成像方法通过计算一组随机闪烁图像序列的累积量来提高空间分辨率.在实际实验中,由于计算的图像序列帧数有限,每个像素上累积量估计的误差将显著影响重构图像的均匀性和连续性.传统超分辨光学涨落成像技术由于缺乏对累积量估计的误差分析,在其后续的Lucy-Richardson解卷积算法中,没有对累积量重构图像的噪声添加约束条件.本文利用基于单组有限长数据的累积量标准差公式,计算了超分辨光学涨落显微图像每个像素上的累积量标准差,并将结果引入Lucy-Richardson解卷积算法中作为迭代优化的偏差阈值.模拟和实验结果表明,在相同图像序列长度下,该优化方法显著提高了超分辨重构图像的均匀性和连续性;在同等图像质量下,该方法可缩短图像序列帧数至原来的一半以下,有望用于活细胞动态超分辨成像.
    The super-resolution optical fluctuation imaging (SOFI) technique enhances image spatial resolution by evaluating the independent stochastic intensity fluctuations of emitters. In principle, it eliminates any noise uncorrelated temporally, and provides unlimited spatial resolution since the calculation of the nth-order cumulant followed by a deconvolution results in an image with n-fold resolution improvement in three dimensions. But in practice, due to limited data length, the statistical uncertainty of cumulants will affect the continuity and homogeneity of SOFI image, which results in the fact that the high order SOFI (typically over 3rd order) cannot improve spatial resolution significantly. Since the variance characterizes the statistical uncertainty of cumulant, we deduce its theoretical expression based on a single dataset. In traditional SOFI techniques, due to lack of statistical analysis of cumulant, there is no noise constraint condition of cumulant in the Lucy-Richardson deconvolution to prevent the algorithm from causing noise amplification. In this paper, based on the cumulant variance formula, we calculate the cumulant standard deviation in each pixel of SOFI image and introduce the results into the Lucy-Richardson algorithm as a DAMPAR to suppress the noise generation in such pixels. The simulation and experimental results show that under the same data length, the deconvolution optimization based on cumulant standard deviation significantly improves the uniformity and continuity of SOFI image. On the other hand, under the premise of identical image quality, this optimization technique can also greatly shorten the image frames to less than half the original, thus promoting the development of super-resolution imaging of living cells.
      通信作者: 陈丹妮, danny@szu.edu.cn;hbniu@szu.edu.cn ; 牛憨笨, danny@szu.edu.cn;hbniu@szu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB825802)、国家自然科学基金(批准号:61335001,61178080,61235012,11004136)、国家重大科学仪器设备开发专项(批准号:2012YQ15009203)和深圳市科技计划项目(批准号:JCYJ20120613173049560,GJHS20120621155433884)资助的课题.
      Corresponding author: Chen Dan-Ni, danny@szu.edu.cn;hbniu@szu.edu.cn ; Niu Han-Ben, danny@szu.edu.cn;hbniu@szu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB825802), National Natural Science Foundation of China (Grant Nos. 61335001, 61178080, 61235012, 11004136), the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ15009203), and the Science and Technology Planning Project of Shenzhen, China (Grant Nos. JCYJ20120613173049560, GJHS20120621155433884).
    [1]

    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J 2009 Proc. Nat. Acad. Sci. 106 22287

    [2]

    Geissbuehler S, Dellagiacoma C, Lasser T 2011 Biomed. Opt. Express 2 408

    [3]

    Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S 2010 Opt. Express 18 18875

    [4]

    Geissbuehler S, Bocchio N L, Dellagiacoma C, Berclaz C, Leutenegger M, Lasser T 2012 Opt. Nanoscopy 1 1

    [5]

    Stein S C, Huss A, Höhnel D, Gregor I, Enderlein J 2015 Opt. Express 23 16154

    [6]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [8]

    Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨2010 59 6948]

    [9]

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 124201 (in Chinese) [李恒, 于斌, 陈丹妮, 牛憨笨2013 62 124201]

    [10]

    Wang X, Chen D, Yu B, Niu H 2015 Appl. Opt. 54 6919

    [11]

    Koppel D E 1974 Phys. Rev. A 10 1938

    [12]

    Qian H 1990 Biophys. Chem. 38 49

    [13]

    Zeng Z, Chen X, Wang H, Huang N, Shan C, Zhang H, Teng J, Xi P 2015 Sci. Rep. 5 1

    [14]

    Wang X, Chen D, Yu B, Niu H 2016 Appl. Opt. 55 7911

    [15]

    Kendall M G, Stuart A 1977 The Advanced Theory of Statistics (Vol. 1) (New York: MacMillan Publishing) pp57-96

    [16]

    Rose C, Smith M D 2002 Mathematical Statistics with Mathematica (New York: Springer) pp31-80

    [17]

    Vandenberg W, Duwé S, Leutenegger M, Moeyaert B, Krajnik B, Lasser T, Dedecker P 2016 Biomed. Opt. Express 7 467

    [18]

    Mller J D 2004 Biophys. J. 86 3981

    [19]

    Biggs D S C, Andrews M 1997 Appl. Opt. 36 1766

    [20]

    Arganda-Carreras I, Fernández-González R, Muöoz-Barrutia A, Ortiz-De-Solorzano C 2010 Microsc. Res. Tech. 73 1019

    [21]

    Lee T C, Kashyap R L, Chu C N 1994 Graph. Model. Im. Proc. 56 462

  • [1]

    Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J 2009 Proc. Nat. Acad. Sci. 106 22287

    [2]

    Geissbuehler S, Dellagiacoma C, Lasser T 2011 Biomed. Opt. Express 2 408

    [3]

    Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S 2010 Opt. Express 18 18875

    [4]

    Geissbuehler S, Bocchio N L, Dellagiacoma C, Berclaz C, Leutenegger M, Lasser T 2012 Opt. Nanoscopy 1 1

    [5]

    Stein S C, Huss A, Höhnel D, Gregor I, Enderlein J 2015 Opt. Express 23 16154

    [6]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642

    [7]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [8]

    Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨2010 59 6948]

    [9]

    Li H, Yu B, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 124201 (in Chinese) [李恒, 于斌, 陈丹妮, 牛憨笨2013 62 124201]

    [10]

    Wang X, Chen D, Yu B, Niu H 2015 Appl. Opt. 54 6919

    [11]

    Koppel D E 1974 Phys. Rev. A 10 1938

    [12]

    Qian H 1990 Biophys. Chem. 38 49

    [13]

    Zeng Z, Chen X, Wang H, Huang N, Shan C, Zhang H, Teng J, Xi P 2015 Sci. Rep. 5 1

    [14]

    Wang X, Chen D, Yu B, Niu H 2016 Appl. Opt. 55 7911

    [15]

    Kendall M G, Stuart A 1977 The Advanced Theory of Statistics (Vol. 1) (New York: MacMillan Publishing) pp57-96

    [16]

    Rose C, Smith M D 2002 Mathematical Statistics with Mathematica (New York: Springer) pp31-80

    [17]

    Vandenberg W, Duwé S, Leutenegger M, Moeyaert B, Krajnik B, Lasser T, Dedecker P 2016 Biomed. Opt. Express 7 467

    [18]

    Mller J D 2004 Biophys. J. 86 3981

    [19]

    Biggs D S C, Andrews M 1997 Appl. Opt. 36 1766

    [20]

    Arganda-Carreras I, Fernández-González R, Muöoz-Barrutia A, Ortiz-De-Solorzano C 2010 Microsc. Res. Tech. 73 1019

    [21]

    Lee T C, Kashyap R L, Chu C N 1994 Graph. Model. Im. Proc. 56 462

  • [1] 杨浩智, 聂梦娇, 马光鹏, 曹慧群, 林丹樱, 屈军乐, 于斌. 基于数字微镜器件的快速超分辨晶格结构光照明显微研究.  , 2024, 73(9): 098702. doi: 10.7498/aps.73.20240216
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像.  , 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [4] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [5] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术.  , 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [6] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究.  , 2021, (): . doi: 10.7498/aps.70.20211712
    [7] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展.  , 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [8] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展.  , 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [9] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾.  , 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [10] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应.  , 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [11] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展.  , 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [12] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法.  , 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [13] 古丽姗, 彭勇刚. 外场作用下BaF分子发射光子累积量及等待时间分布的研究.  , 2016, 65(9): 094202. doi: 10.7498/aps.65.094202
    [14] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究.  , 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [15] 王凯, 曾焱, 丁志华, 孟婕, 史国华, 张雨东. 谱域光学相干层析系统中基于解卷积方法的像质优化.  , 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [16] 罗世华, 曾九孙. 基于多分辨分析的高炉铁水含硅量波动多重分形辨识.  , 2009, 58(1): 150-157. doi: 10.7498/aps.58.150
    [17] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性.  , 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [18] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法.  , 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
    [19] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究.  , 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [20] 陈岩松, 郑师海, 马学斌. 光学傅氏变换离焦近似及对解卷积的应用.  , 1989, 38(10): 1723-1726. doi: 10.7498/aps.38.1723
计量
  • 文章访问数:  6223
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-13
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map