搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环磁美特材料的无线传能系统

赵俊飞 张冶文 李云辉 陈永强 方恺 赫丽

引用本文:
Citation:

基于环磁美特材料的无线传能系统

赵俊飞, 张冶文, 李云辉, 陈永强, 方恺, 赫丽

Wireless power transfer system based on toroidal metamaterials

Zhao Jun-Fei, Zhang Ye-Wen, Li Yun-Hui, Chen Yong-Qiang, Fang Kai, He Li
PDF
导出引用
  • 传统的四线圈磁共振耦合无线传能系统已在移动电子设备、电动汽车无线充电中得以应用,然而,其传能效率仍然因其磁场空间分布的发散性而难以提高. 为了克服上述缺点,我们提出了一种基于环磁美特材料、磁场更为局域的高效无线传能系统. 该系统将四线圈系统中的一对磁谐振耦合线圈替换为具有环磁谐振特性的四个非对称开口谐振环. 该环磁模式具有高Q值、低金属损耗以及辐射抑制的特性. 实验结果表明,相对于四线圈系统,该系统的磁场更为集中,能量传输效率更高.
    Now, the traditional four-coil magnetic coupling systems have been used in the wireless charging of mobile electronic devices and electric vehicles. However, the system efficiency is difficult to improve due to the divergence of spatial distribution of magnetic field. To overcome this disadvantage, we propose an efficient system based on the toroidal metamaterials, which support a resonant electromagnetic mode that is dominated by the toroidal moment. The toroidal moment is produced by currents flowing on the surface of a torus along its meridian. It presents remarkable ability to localize the field and suppress the radiation. This new toroidal magnetic mode system (TMMS) consists of four asymmetric split resonant rings (ASRRs). Pairs of ASRRs in the same unit (transmit unit and receiver unit) have mirror symmetry about the yz plane. Pairs of ASRRs in different units have 180 rotational symmetry about the x axis. These four rings support the toroidal magnetic resonant mode (dominated by toroidal moment). For comparison, we also construct two symmetric split resonant rings to imitate the four-coil system (FCS). It supports parallel magnetic mode (dominated by magnetic dipole moment) and antiparallel magnetic mode (dominated by magnetic dipole moment and magnetic quadrupole moment). To confirm the improvement of efficiency, we compare the transmission of the TMMS with that of the FCS at the same transfer distance (10 mm). The TMMS presents a higher transmission and the increase in simulation (experiment) is 81% (40%). The toroidal magnetic mode in the TMMS also exhibits low metal loss, which is reflected in these spectra. The simulated distributions of magnetic field line corresponding to the resonantly magnetic modes in both systems are provided in this article. Instead of divergence in FCS, the magnetic field lines of TMMS are well constrained around the four rings and form closed loops along these rings. The density of the field line and the magnitude of field near the receiving coil are both enhanced. So the system efficiency, which is determined by the magnetic flux of the receiving coil, is improved. The dispersions of radiation power for various induced multipole moments from the two systems are also calculated. The dominance of toroidal moment corresponding to the resonant mode in TMMS is verified and the radiation is suppressed to 1/4 of FCS. Finally, the transmissions of two systems at different transfer distances are presented. The toroidal magnetic mode system presents a higher efficiency at strong coupling area (0-25 mm). The average increase of the transmission in simulation (experiment) is 73% (46%). In summary, the proposed new system exhibits the properties of high efficiency, low metal loss and low radiation loss with the multiport output. It would have broad prospects of practical application in WPT.
      通信作者: 张冶文, yewen.zhang@tongji.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB922001)和国家自然科学基金(批准号:51377003,11234010)资助的课题.
      Corresponding author: Zhang Ye-Wen, yewen.zhang@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001) and the National Natural Science Foundation of China (Grant Nos. 51377003, 11234010).
    [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [3]

    Hamam R E, Karalis A, Joannopoulos J D, Soljacic M 2009 Ann. Phys. 324 1783

    [4]

    Oh K S, Lee W S, Lee W S, Yu J W 2012 Appl. Phys. Lett. 101 064105

    [5]

    Lee W S, Lee H L, Oh K S, Yu J W 2012 Appl. Phys. Lett. 100 214105

    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [10]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [11]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [12]

    Urzhumov Y, Smith D R 2011 Phys. Rev. B: Condens. Matter 83 205114

    [13]

    Wang B N, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J Y 2011 Appl. Phys. Lett. 98 254101

    [14]

    Ranaweera A L A K, Moscoso C A, Lee J W 2015 J. Phys. D: Appl. Phys. 48 455104

    [15]

    Chabalko M J, Ricketts D S 2015 Appl. Phys. Lett. 106 062401

    [16]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801

    [17]

    Yu X F, Sandhu S, Beiker S, Sassoon R, Fan S H 2011 Appl. Phys. Lett. 99 214102

    [18]

    Wu J, Wang B N, Yerazunis W S, Teo K H 2013 IEEE Wireless Power Transfer Perugia, Italy, May 15-16, 2013 p155

    [19]

    Zeldovich Y B 1958 Sov. Phys. JETP 6 1184

    [20]

    Haxton W C 1997 Science 275 1753

    [21]

    Afanasiev G N 2001 J. Phys. D: Appl. Phys. 34 539

    [22]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510

    [23]

    Dong Z G, Zhu J, Rho J, Li J Q, Lu C G, Yin X B, Zhang X 2012 Appl. Phys. Lett. 101 144105

    [24]

    Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken P A 2012 Nano Lett. 12 5239

    [25]

    Fan Y C, Wei Z Y, Li H Q, Chen H, Soukoulis C M 2013 Phys. Rev. B: Condens. Matter 87 115417

    [26]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [27]

    Huang Y W, Chen W T, Wu P C, Fedotov V A, Zheludev N I, Tsai D P 2013 Sci. Rep. 3 1237

    [28]

    Ye Q W, Guo L Y, Li M H, Liu Y, Xiao B X, Yang H L 2013 Phys. Scr. 88 055002

    [29]

    Kim N Y, Kim K Y, Kim C W 2012 Microw. Opt. Tech. Lett. 54 1423

    [30]

    Radescu E E, Vaman G 2002 Phys. Rev. E 65 046609

  • [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [3]

    Hamam R E, Karalis A, Joannopoulos J D, Soljacic M 2009 Ann. Phys. 324 1783

    [4]

    Oh K S, Lee W S, Lee W S, Yu J W 2012 Appl. Phys. Lett. 101 064105

    [5]

    Lee W S, Lee H L, Oh K S, Yu J W 2012 Appl. Phys. Lett. 100 214105

    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [10]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [11]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [12]

    Urzhumov Y, Smith D R 2011 Phys. Rev. B: Condens. Matter 83 205114

    [13]

    Wang B N, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J Y 2011 Appl. Phys. Lett. 98 254101

    [14]

    Ranaweera A L A K, Moscoso C A, Lee J W 2015 J. Phys. D: Appl. Phys. 48 455104

    [15]

    Chabalko M J, Ricketts D S 2015 Appl. Phys. Lett. 106 062401

    [16]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801

    [17]

    Yu X F, Sandhu S, Beiker S, Sassoon R, Fan S H 2011 Appl. Phys. Lett. 99 214102

    [18]

    Wu J, Wang B N, Yerazunis W S, Teo K H 2013 IEEE Wireless Power Transfer Perugia, Italy, May 15-16, 2013 p155

    [19]

    Zeldovich Y B 1958 Sov. Phys. JETP 6 1184

    [20]

    Haxton W C 1997 Science 275 1753

    [21]

    Afanasiev G N 2001 J. Phys. D: Appl. Phys. 34 539

    [22]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510

    [23]

    Dong Z G, Zhu J, Rho J, Li J Q, Lu C G, Yin X B, Zhang X 2012 Appl. Phys. Lett. 101 144105

    [24]

    Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken P A 2012 Nano Lett. 12 5239

    [25]

    Fan Y C, Wei Z Y, Li H Q, Chen H, Soukoulis C M 2013 Phys. Rev. B: Condens. Matter 87 115417

    [26]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [27]

    Huang Y W, Chen W T, Wu P C, Fedotov V A, Zheludev N I, Tsai D P 2013 Sci. Rep. 3 1237

    [28]

    Ye Q W, Guo L Y, Li M H, Liu Y, Xiao B X, Yang H L 2013 Phys. Scr. 88 055002

    [29]

    Kim N Y, Kim K Y, Kim C W 2012 Microw. Opt. Tech. Lett. 54 1423

    [30]

    Radescu E E, Vaman G 2002 Phys. Rev. E 65 046609

  • [1] 王利凯, 王宇倩, 郭志伟, 江海涛, 李云辉, 羊亚平, 陈鸿. 基于高阶非厄密物理的磁共振无线电能传输研究进展.  , 2024, 73(20): 201101. doi: 10.7498/aps.73.20241079
    [2] 杨旭云, 陈永聪, 芦文斌, 朱晓梅, 敖平. 激子极化子共振束缚介导的光合作用能量传输.  , 2022, 71(23): 234202. doi: 10.7498/aps.71.20221412
    [3] 曾闵, 罗颖, 江虹. 无线能量传输支持的设备到设备多播能量协作传输机制.  , 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [4] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管.  , 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [5] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管.  , 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [6] 石泰峡, 董丽娟, 陈永强, 刘艳红, 刘丽想, 石云龙. 人工磁导体对无线能量传输空间场的调控.  , 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [7] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析.  , 2016, 65(4): 048401. doi: 10.7498/aps.65.048401
    [8] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用.  , 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [9] 朱柯斌, 聂在平, 孙向阳. 基于电缆-无线耦合的随钻测井信号传输新方法及其数值模拟研究.  , 2013, 62(6): 060202. doi: 10.7498/aps.62.060202
    [10] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统.  , 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [11] 孙中华, 王红艳, 王辉, 张志东, 张中月. 金纳米环双体尺寸和耦合效应对表面等离子体共振特性的影响.  , 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [12] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究.  , 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [13] 吴丽君, 韩宇, 公卫江, 谭天亚. 量子点环嵌入Aharonov-Bohm干涉器中电子的退耦合态及反共振现象.  , 2011, 60(10): 107303. doi: 10.7498/aps.60.107303
    [14] 林敏, 张美丽. 力与耦合系统的交互作用和随机能量共振.  , 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [15] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真.  , 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [16] 谌雄文, 施振刚, 谌宝菊, 宋克慧. T型耦合双量子点系统的非对等Kondo共振分裂传输.  , 2008, 57(4): 2421-2426. doi: 10.7498/aps.57.2421
    [17] 王 科, 凌 健, 谢飞翔, 马 平, 杨 涛, 王福仁, 戴远东. 耦合双π环的自发磁化.  , 2003, 52(6): 1509-1514. doi: 10.7498/aps.52.1509
    [18] 缪希茄, 卢广, 叶朝辉. 应用积算符理论研究弱耦合双自旋体系的Raman磁共振谱.  , 1997, 46(4): 802-812. doi: 10.7498/aps.46.802
    [19] 毕思云. 柱形畴阵的铁磁共振.  , 1988, 37(7): 1188-1191. doi: 10.7498/aps.37.1188
    [20] 崔万秋, 阮立坚. Li2O-P205O-V2O5系统非晶材料电学性质与磁共振研究.  , 1987, 36(3): 322-331. doi: 10.7498/aps.36.322
计量
  • 文章访问数:  7030
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-25
  • 修回日期:  2016-05-25
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map