-
利用溶剂热/热分解的方法合成出微结构可控的-Fe2O3/NiO 核-壳结构纳米花. 分析表明NiO壳层是由单晶结构的纳米片构成, 这些纳米片不规则地镶嵌在-Fe2O3核心的表面. Fe3O4/Ni(OH) 2前驱体的煅烧时间对-Fe2O3/NiO核-壳体系的晶粒生长、NiO相含量和壳层致密度均有很大的影响. 振动样品磁强计和超导量子干涉仪的测试分析表明, 尺寸效应、NiO相含量和铁磁-反铁磁界面耦合效应是决定-Fe2O3/NiO核-壳纳米花磁性能的重要因素. 随着NiO相含量的增加, 磁化强度减小, 矫顽力增大. 在5 K下, -Fe2O3/NiO核-壳纳米花表现出一定的交换偏置效应(HE=46 Oe), 这来自于(亚)铁磁性-Fe2O3 和反铁磁性NiO之间的耦合相互作用. 与此同时, 这种交换耦合效应也进一步提高了样品的矫顽力(HC=288 Oe).The main purpose of this work is to explore the influences of microstructures on the magnetic properties, as well as the formation mechanism of -Fe2O3/NiO core/shell nanoflowers. The synthesis of nanoflower-like samples includes three processes. Firstly, Fe3O4 nanospheres are synthesized by the solvothermal reaction of FeCl3 dissolved in ethylene glycol and NaAc. Secondly, Fe3O4/Ni(OH)2 core/shell precursor is fabricated by solvothermal method through using the early Fe3O4 spheres and Ni(NO3)26H2O in an ethanol solution. Finally, the precursor Fe3O4/Ni(OH)2 is calcined in air at 300 ℃ for 3-6 h, and therefore resulting in -Fe2O3/NiO core/shell nanoflowers. Their microstructures are characterized by using XRD, XPS, SEM, HRTEM and SAED techniques. The results show that the final powder samples are -Fe2O3/NiO with typical core/shell structure. In this core/shell system, the -Fe2O3 sphere acts as core and the NiO acts as shell, which are comprised of many irregular flake-like nanosheets with monocrystalline structure, and these nanosheets are packed together on the surfaces of -Fe2O3 spheres. The calcination time of Fe3O4/Ni(OH)2 precursor has significant influences on the grain growth, the NiO content and the compactness of NiO shells in the -Fe2O3/NiO core/shell system. VSM and SQUID are used to characterize the magnetic properties of -Fe2O3/NiO core/shell nanoflowers. The results indicate that the 3 h-calcined sample displays better ferromagnetic properties (such as higher ms and smaller HC) because of their high -Fe2O3 content. In addition, as the coupling interaction between the FM -Fe2O3 and AFM NiO components, we observe that the -Fe2O3/NiO samples formed in 3 h and 6 h display certain exchange bias (HE=20 and 46 Oe, respectively). Such a coupling effect allows a variety of reversal paths for the spins upon cycling the applied field, and thereby resulting in the enhancement of coercivity (HC(FC)=252 and 288 Oe, respectively). Further, the values of HE and HC for the former are smaller than those of the latter, this is because of the AFM NiO content in 6 h-calcined sample much higher than that in 3 h-calcined sample. Especially, the temperature dependences of the magnetization M of the two samples under both ZFC and FC conditions indicate that an extra anisotropy is induced. In a word, the size effect, NiO phase content, and FM-AFM (where FM denotes the ferromagnetic -Fe2O3 component, while AFM is the antiferromagnetic NiO component) interface coupling effect have significant influence on the magnetic properties of -Fe2O3/NiO core/shell nanoflowers.
-
Keywords:
- phase content /
- hierarchical structure /
- interface coupling /
- exchange bias
[1] Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222
[2] Hao R, Xing R J, Xu Z C, Hou Y, Gao S, Sun S H 2010 Adv. Mater. 22 2729
[3] Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. Int. Ed. 119 6445
[4] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogus J 2003 Nature 423 850
[5] Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393
[6] Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904
[7] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413
[8] Nogus J, Sort J, Langlais V, Skumryev V, Suriach S, Muoz J S, Bar M D 2005 Phys. Rep. 422 65
[9] Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414
[10] Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246
[11] Liu C, Cui J G, He X M, Shi H G 2014 J. Nanopart. Res. 16 2320
[12] Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A P 2008 Adv. Mater. 20 4323
[13] Xiong Q Q, Tu J P, Xia X H, Zhao X Y, Gu C D, Wang X L 2013 Nanoscale 5 7906
[14] Wang Y, Li S K, Xing X R, Huang F, Shen Y, Xie A, Wang X, Zhang J 2011 Chem. Eur. J. 17 4802
[15] Liu J, Qiao S Z, Hartono S B, Lu G Q 2010 Angew. Chem. Int. Ed. 49 4981
[16] Xi G C, Yue B, Cao J Y, Ye J 2011 Chem. Eur. J. 17 5145
[17] Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609
[18] Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925
[19] Syed-Hassan S S A, Li C Z 2011 Appl. Catal. A 405 166
[20] Varghese B, Reddy M V, Zhu Y W, Lit C S, Hoong T C, Subba Rao G V, Chowdari B V R, Wee A T S, Lim C T, Sow C H 2008 Chem. Mater. 20 3360
[21] Ding S J, Zhu T, Chen J S, Wang Z, Yuan C, Lou X W 2011 J. Mater. Chem. 21 6602
[22] Zhu G X, Xi C Y, Xu H, Zheng D, Liu Y, Xu X, Shen X 2012 RSC Adv. 2 4236
[23] Song Z, Chen L F, Hu J C, Richards R 2009 Nanotechnology 20 275707
[24] Deng H, Li X L, Peng Q, Wang X, Chen J, Li Y 2005 Angew. Chem. Int. Ed. 44 2782
[25] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J 2006 Adv. Mater. 18 2426
[26] Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (IEEE Press: New Jersey) pp151-194
[27] Lo C K, Xiao D, Choi M M F 2007 J. Mater. Chem. 17 2418
[28] Sun G B, Dong B X, Cao M H, Wei B, Hu C 2011 Chem. Mater. 23 1587
[29] Teng X W, Black D, Watkins N J, Gao Y, Yang H 2003 Nano Lett. 3 261
[30] Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441
[31] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
[32] Zhu T, Chen J S, Lou X W 2012 J. Phys. Chem. C 116 6873
[33] Song X F, Gao L 2008 J. Am. Ceram. Soc. 91 4105
[34] Yang L X, Zhu Y J, Tong H, Liang Z H, Wang W W 2007 Cryst. Growth Des. 7 2716
[35] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X 2003 J. Am. Chem. Soc. 126 273
[36] Wang L J, Teng J, Yu G H 2006 Acta Phys. Sin. 55 4282 (in Chinese) [王立锦, 藤蛟, 于广华 2006 55 4282]
[37] Dutta D P, Garima S, Manna P K, Tyagi A K, Yusuf S M 2008 Nanotechnology 19 245609
[38] Zhang H T, Chen X H 2005 Nanotechnology 16 2288
[39] Feng J N, Liu W, Geng D Y, Ma S, Yu T, Zhao X T, Dai Z M, Zhao X G, Zhang Z D 2014 Chin. Phys. B 23 087503
[40] Ahmadvand H, Salamati H, Kameli P, Razavi F S 2010 J. Supercond. Novel Magn. 23 1467
[41] Sharma S K, Vargas J M, Knobel M, Pirota K R, Meneses C T, Kumar S, Lee C G, Pagliuso P G, Rettori C 2010 J. Appl. Phys. 107 725
-
[1] Lu A H, Salabas E L, Schth F 2007 Angew. Chem. Int. Ed. 46 1222
[2] Hao R, Xing R J, Xu Z C, Hou Y, Gao S, Sun S H 2010 Adv. Mater. 22 2729
[3] Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. Int. Ed. 119 6445
[4] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogus J 2003 Nature 423 850
[5] Kodama R H, Makhlouf S A, Berkowitz A E 1997 Phys. Rev. Lett. 79 1393
[6] Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904
[7] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413
[8] Nogus J, Sort J, Langlais V, Skumryev V, Suriach S, Muoz J S, Bar M D 2005 Phys. Rep. 422 65
[9] Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414
[10] Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett. 12 246
[11] Liu C, Cui J G, He X M, Shi H G 2014 J. Nanopart. Res. 16 2320
[12] Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A P 2008 Adv. Mater. 20 4323
[13] Xiong Q Q, Tu J P, Xia X H, Zhao X Y, Gu C D, Wang X L 2013 Nanoscale 5 7906
[14] Wang Y, Li S K, Xing X R, Huang F, Shen Y, Xie A, Wang X, Zhang J 2011 Chem. Eur. J. 17 4802
[15] Liu J, Qiao S Z, Hartono S B, Lu G Q 2010 Angew. Chem. Int. Ed. 49 4981
[16] Xi G C, Yue B, Cao J Y, Ye J 2011 Chem. Eur. J. 17 5145
[17] Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009 J. Phys. Chem. C 113 14609
[18] Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925
[19] Syed-Hassan S S A, Li C Z 2011 Appl. Catal. A 405 166
[20] Varghese B, Reddy M V, Zhu Y W, Lit C S, Hoong T C, Subba Rao G V, Chowdari B V R, Wee A T S, Lim C T, Sow C H 2008 Chem. Mater. 20 3360
[21] Ding S J, Zhu T, Chen J S, Wang Z, Yuan C, Lou X W 2011 J. Mater. Chem. 21 6602
[22] Zhu G X, Xi C Y, Xu H, Zheng D, Liu Y, Xu X, Shen X 2012 RSC Adv. 2 4236
[23] Song Z, Chen L F, Hu J C, Richards R 2009 Nanotechnology 20 275707
[24] Deng H, Li X L, Peng Q, Wang X, Chen J, Li Y 2005 Angew. Chem. Int. Ed. 44 2782
[25] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J 2006 Adv. Mater. 18 2426
[26] Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (IEEE Press: New Jersey) pp151-194
[27] Lo C K, Xiao D, Choi M M F 2007 J. Mater. Chem. 17 2418
[28] Sun G B, Dong B X, Cao M H, Wei B, Hu C 2011 Chem. Mater. 23 1587
[29] Teng X W, Black D, Watkins N J, Gao Y, Yang H 2003 Nano Lett. 3 261
[30] Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441
[31] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
[32] Zhu T, Chen J S, Lou X W 2012 J. Phys. Chem. C 116 6873
[33] Song X F, Gao L 2008 J. Am. Ceram. Soc. 91 4105
[34] Yang L X, Zhu Y J, Tong H, Liang Z H, Wang W W 2007 Cryst. Growth Des. 7 2716
[35] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X 2003 J. Am. Chem. Soc. 126 273
[36] Wang L J, Teng J, Yu G H 2006 Acta Phys. Sin. 55 4282 (in Chinese) [王立锦, 藤蛟, 于广华 2006 55 4282]
[37] Dutta D P, Garima S, Manna P K, Tyagi A K, Yusuf S M 2008 Nanotechnology 19 245609
[38] Zhang H T, Chen X H 2005 Nanotechnology 16 2288
[39] Feng J N, Liu W, Geng D Y, Ma S, Yu T, Zhao X T, Dai Z M, Zhao X G, Zhang Z D 2014 Chin. Phys. B 23 087503
[40] Ahmadvand H, Salamati H, Kameli P, Razavi F S 2010 J. Supercond. Novel Magn. 23 1467
[41] Sharma S K, Vargas J M, Knobel M, Pirota K R, Meneses C T, Kumar S, Lee C G, Pagliuso P G, Rettori C 2010 J. Appl. Phys. 107 725
计量
- 文章访问数: 6493
- PDF下载量: 332
- 被引次数: 0