-
采用射频等离子体增强化学气相沉积技术, 制备了具有一定晶化率不同Ge 含量的氢化微晶硅锗 (c-Si1-xGex:H)薄膜. 通过X射线荧光谱、拉曼光谱、X 射线衍射 谱、傅里叶红外谱、吸收系数谱和电导率的测试, 表征了c-Si1-xGex:H的材料微结构随Ge含量的演变. 研究表明: 提高Ge含量可以增强c-Si1-xGex:H薄膜的吸收系数. 将其应用到硅基薄膜太阳电池的本征层中可以有效提高电池的短路电流密度 (Jsc). 特别是在电池厚度较薄或陷光不充分的情况下, 长波响应的提高会更为显著. 应用ZnO衬底后, 在Ge含量分别为9%和27%时, c-Si1-xGex:H太阳电池的转换效率均超过了7%. 最后, 将c-Si1-xGex:H太阳电池应用在双结叠层太阳电池的底电池中, 发现c-Si0.73Ge0.27:H底电池在厚度为800 nm时即可得到比1700 nm 厚微晶硅 (c-Si:H) 底电池更高的长波响应. 以上结果体现了c-Si1-xGex:H 太阳电池作为高效近红外光吸收层, 在硅基薄膜太阳电池中应用的前景.
-
关键词:
- 氢化微晶硅锗 /
- 近红外响应 /
- 硅基薄膜太阳电池 /
- 等离子体增强化学气相沉积
Hydrogenated microcrystalline silicon germanium (c-Si1-xGex:H) thin films have been developed as alternative bottom sub-cell absorbers for multi-junction thin film silicon solar cells due to their narrower band-gaps and higher absorption coefficients than conventional hydrogenated microcrystalline silicon (c-Si:H) thin films. However, since the structure complexity was increased a lot by Ge incorporation, the influences of c-Si1-xGex:H film properties on Ge composition have not been understood yet. In this work, c-Si1-xGex:H thin films with various Ge content and similar crystalline volume fraction are fabricated by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD). The evolutions of c-Si1-xGex:H material properties by Ge incorporation are characterized by X-ray fluorescence spectrometry, Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, absorption coefficient spectrum, and conductivity measurement. The results show that the properties of c-Si1-xGex:H thin films are strongly determined by Ge content. With the increase of Ge content, the absorption coefficient, (111) grain size, microstructure factor, and dark conductivity of c-Si1-xGex:H thin films increase, while the H content, (220) grain size, and photosensitivity of c-Si1-xGex:H thin film decrease. Then, c-Si1-xGex:H is used as the intrinsic layer in the single junction solar cells. The performances of c-Si1-xGex:H solar cells with different Ge content and two types of transparent conductive oxide (SnO2 and ZnO) substrates are systematically studied. The results indicate that although c-Si1-xGex:H thin films become more defective and less compact with Ge incorporation, c-Si1-xGex:H solar cells exhibit a significant improvement in near-infrared response, especially under the circumstances of thin cell thickness and inefficient light trapping structure. Meanwhile, by using ZnO substrates, initial efficiencies of 7.15% (Jsc=22.6 mA/cm2, Voc=0.494 V, FF=64.0%) and 7.01% (Jsc=23.3 mA/cm2, Voc=0.482 V, FF=62.4%) are achieved by c-Si0.9Ge0.1:H solar cell and c-Si0.73Ge0.27:H solar cell, respectively. Furthermore, the c-Si0.73Ge0.27:H solar cell is used as the bottom sub-cell of the double-junction solar cell, and a Jsc.bottom of 12.30 mA/cm2 can be obtained with the bottom sub-cell thickness as thin as 800 nm, which is even higher than that of c-Si:H bottom sub-cell with 1700 nm thickness. Finally, an initial efficiency of 10.28% is achieved in an a-Si:H/c-Si0.73Ge0.27:H double junction cell structure. It is demonstrated that by using the c-Si1-xGex:H solar cell as the bottom sub-cell in multi-junction thin film silicon solar cells, a higher tandem cell performance can be achieved with a thin thickness, which has a great potential for cost-effective photovoltaics.-
Keywords:
- hydrogenated microcrystalline silicon germanium /
- near-infrared response /
- thin film silicon solar cell /
- plasma-enhanced chemical vapor deposition
[1] Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692
[2] Kang D W, Chowdhury A, Sichanugrist P, Abe Y, Konishi H, Tsuda Y, Shinagawa T, Tokioka H, Fuchigami H, Konagai M 2015 Curr. Appl. Phys. 15 1022
[3] Schttauf J W, Niesen B, Lfgren L, Bonnet-Eymard M, Stuckelberger M, Hnni S, Boccard M, Bugnon G, Despeisse M, Haug F J, Meillaud F, Ballif C 2015 Sol. Energy Mater. Sol. Cells 133 163
[4] Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26
[5] Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512
[6] Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I 2015 Appl. Phys. Lett. 106 213902
[7] Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M 1996 Appl. Phys. Lett. 69 4224
[8] Ni J, Liu Q, Zhang J J, Ma J, Wang H, Zhang X D, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 126 6
[9] Zhang L P, Zhang J J, Zhang X, Shang Z R, Hu Z X, Zhang Y P, Geng X H, Zhao Y 2008 Acta Phys. Sin. 57 7338 (in Chinese) [张丽平, 张建军, 张鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵颖 2008 57 7338]
[10] Boshta M, Alavi B, Braunstein R, Brner K, Dalal V L 2005 Sol. Energy Mater. Sol. Cells 87 387
[11] Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phy. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 62 036102]
[12] Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 J. Semicond. 34 034008
[13] Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloys Compd. 632 456
[14] Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2008 Appl. Phys. Express 1 031501
[15] Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161
[16] Zhang J J, Shimizu K, Zhao Y, Geng X H, Hanna J 2006 Phys. Status Solidi A 203 760
[17] Kim S, Park C, Lee J C, Chob J S, Kim Y 2013 Curr. Appl. Phys. 13 457
[18] Tang Z, Wang W, Wang D, Liu D, Liu Q, He D 2010 J. Alloys Compd. 504 403
[19] Krause M, Stiebig H, Carius R, Zastrow U, Bay H, Wagner H 2002 J. Non-Cryst. Solids 299-302 158
[20] Cao Y, Zhang J J, Yan G G, Ni J, Li T W, Huang Z H, Zhao Y 2014 Acta Phys. Sin. 63 076801 (in Chinese) [曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖 2014 63 076801]
[21] Podraza N J, Wronski C R, Collins R W 2006 J. Non-Cryst. Solids 352 1263
[22] Isomura M, Nakahata K, Shima M, Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519
[23] Vallat-Sauvain E, Kroll U, Meier J, Shah A, Pohl J 2000 J. Appl. Phys. 87 3137
[24] Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214
[25] Moutinho H R, Jiang C S, Perkins J, Xu Y, Nelson B P, Jones K M, Romero M J, Al-Jassim M M 2003 Thin Solid Films 430 135
[26] Kamiya T, Nakahata K, Tan Y T, Durrani Z A K, Shimizu I 2001 J. Appl. Phys. 89 6265
[27] Guo L, Lin R 2000 Thin Solid Films 376 249
[28] Das R, Jana T, Ray S 2005 Sol. Energy Mater. Sol. Cells 86 207
-
[1] Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H 1999 Science 285 692
[2] Kang D W, Chowdhury A, Sichanugrist P, Abe Y, Konishi H, Tsuda Y, Shinagawa T, Tokioka H, Fuchigami H, Konagai M 2015 Curr. Appl. Phys. 15 1022
[3] Schttauf J W, Niesen B, Lfgren L, Bonnet-Eymard M, Stuckelberger M, Hnni S, Boccard M, Bugnon G, Despeisse M, Haug F J, Meillaud F, Ballif C 2015 Sol. Energy Mater. Sol. Cells 133 163
[4] Kim S, Chung J W, Lee H, Park J, Heo Y, Lee H M 2013 Sol. Energy Mater. Sol. Cells 119 26
[5] Yan B, Yue G, Sivec L, Yang J, Guha S, Jiang C 2011 Appl. Phys. Lett. 99 113512
[6] Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I 2015 Appl. Phys. Lett. 106 213902
[7] Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M 1996 Appl. Phys. Lett. 69 4224
[8] Ni J, Liu Q, Zhang J J, Ma J, Wang H, Zhang X D, Zhao Y 2014 Sol. Energy Mater. Sol. Cells 126 6
[9] Zhang L P, Zhang J J, Zhang X, Shang Z R, Hu Z X, Zhang Y P, Geng X H, Zhao Y 2008 Acta Phys. Sin. 57 7338 (in Chinese) [张丽平, 张建军, 张鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵颖 2008 57 7338]
[10] Boshta M, Alavi B, Braunstein R, Brner K, Dalal V L 2005 Sol. Energy Mater. Sol. Cells 87 387
[11] Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Ni J, Geng X H, Zhao Y 2013 Acta Phy. Sin. 62 036102 (in Chinese) [曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖 2013 62 036102]
[12] Cao Y, Zhang J J, Li T W, Huang Z H, Ma J, Yang X, Ni J, Geng X H, Zhao Y 2013 J. Semicond. 34 034008
[13] Cao Y, Zhou J, Wang Y J, Ni J, Zhang J J 2015 J. Alloys Compd. 632 456
[14] Matsui T, Chang C W, Takada T, Isomura M, Fujiwara H, Kondo M 2008 Appl. Phys. Express 1 031501
[15] Cao Y, Zhang J J, Li C, Li T W, Huang Z H, Ni J, Hu Z Y, Geng X H, Zhao Y 2013 Sol. Energy Mater. Sol. Cells 114 161
[16] Zhang J J, Shimizu K, Zhao Y, Geng X H, Hanna J 2006 Phys. Status Solidi A 203 760
[17] Kim S, Park C, Lee J C, Chob J S, Kim Y 2013 Curr. Appl. Phys. 13 457
[18] Tang Z, Wang W, Wang D, Liu D, Liu Q, He D 2010 J. Alloys Compd. 504 403
[19] Krause M, Stiebig H, Carius R, Zastrow U, Bay H, Wagner H 2002 J. Non-Cryst. Solids 299-302 158
[20] Cao Y, Zhang J J, Yan G G, Ni J, Li T W, Huang Z H, Zhao Y 2014 Acta Phys. Sin. 63 076801 (in Chinese) [曹宇, 张建军, 严干贵, 倪牮, 李天微, 黄振华, 赵颖 2014 63 076801]
[21] Podraza N J, Wronski C R, Collins R W 2006 J. Non-Cryst. Solids 352 1263
[22] Isomura M, Nakahata K, Shima M, Taira S, Wakisaka K, Tanaka M, Kiyama S 2002 Sol. Energy Mater. Sol. Cells 74 519
[23] Vallat-Sauvain E, Kroll U, Meier J, Shah A, Pohl J 2000 J. Appl. Phys. 87 3137
[24] Kim S, Park C, Lee J C, Cho J S, Kim Y 2013 Thin Solid Films 534 214
[25] Moutinho H R, Jiang C S, Perkins J, Xu Y, Nelson B P, Jones K M, Romero M J, Al-Jassim M M 2003 Thin Solid Films 430 135
[26] Kamiya T, Nakahata K, Tan Y T, Durrani Z A K, Shimizu I 2001 J. Appl. Phys. 89 6265
[27] Guo L, Lin R 2000 Thin Solid Films 376 249
[28] Das R, Jana T, Ray S 2005 Sol. Energy Mater. Sol. Cells 86 207
计量
- 文章访问数: 6351
- PDF下载量: 228
- 被引次数: 0