搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离化态原子基态电子结构特征与轨道竞争规律

金锐 高翔 曾德灵 顾春 岳现房 李家明

引用本文:
Citation:

离化态原子基态电子结构特征与轨道竞争规律

金锐, 高翔, 曾德灵, 顾春, 岳现房, 李家明

Characteristics of ground state electronic structures of ionized atoms and rules of their orbital competitions

Jin Rui, Gao Xiang, Zeng De-Ling, Gu Chun, Yue Xian-Fang, Li Jia-Ming
PDF
导出引用
  • 离化态原子广泛存在于等离子体物质中, 其相关性质是天体物理、受控核聚变等前沿科学研究领域的重要基础. 基于独立电子近似, 本文系统研究了扩展周期表元素(2Z 119)所有中性和离化态原子的基态电子结构. 基于设计的原子轨道竞争图, 系统总结了各周期元素轨道竞争的规律, 并结合离化态原子的局域自洽势阐明了其轨道竞争(即轨道塌陷)的机制; 在此基础上, 说明了部分元素性质与轨道竞争的关系. 利用本文研究得到的离化态原子基态电子结构, 可建立更精密计算相关原子的能级结构、跃迁几率等物理量之基础, 从而满足高功率自由电子激光实验分析、原子核质量精密测量等前沿研究的需求.
    Ionized atoms widely exist in plasmas, and studies of properties of ionized atoms are the foundations of frontier science researches such as astrophysics and controlled nuclear fusions. For example, the information about the ground configurations of atoms is required for accurately calculating the physical quantities such as energy levels and dynamical processes. The configurations for different ionized atoms can be obtained with the photo-electron energy spectrum experiment, however it is very time-consuming to obtain so many data of all ions. Therefore the more economical theoretical study will be of great importance. As is well known, the configurations of neutral atoms can be determined according to Mendeleev order while those of highly ionized atoms are hydrogen-like due to the strong Coulombic potential of their nuclei. Then with the variations of ionization degree and atomic number along the periodic table, there would appear the interesting competitions between electronic orbitals. Although some theoretical results exist for ions 3 Z 118, 3 Ne 105 (where Z is the atomic number and Ne is the electron number), there are many errors in the results for highly ionized atoms. Therefore, the ground configurations of ionized atoms and their orbital competitions still deserve to be systematically studied. Based on the independent electron approximation, we calculate the energy levels of all possible competition configurations of all the neutral and ionized atoms in the extended periodic tables (2 Z 119) by Dirac-Slater method. Then the ground configurations are determined by calculating the chosen lowest total energy. The advantages of Dirac- Slater method are as follows. 1) It has been shown that the Dirac-Slater calculation is accurate enough for studying the ground properties of atoms, such as the 1st threshold, and that higher accuracy will be obtained for highly ionized atoms, because the electron correlation becomes less important. 2) Furthermore, with Dirac-Slater method we can obtain the localized self-consistent potential, thereby we can study the orbital competition rules for different atoms. Using the three of our designed atomic orbital competition graphs, all of our calculated ground configurations for over 7000 ionized atoms are conveniently expressed. We systematically summarize the rules of orbital competitions for different elements in different periods. We elucidate the mechanism of orbital competition (i.e., orbital collapsing) with the help of self-consistent atomic potential of ionized atoms. Also we compare the orbital competition rules for different periods of transition elements, the rare-earth and transuranium elements with the variation of the self-consistent filed for different periods. On this basis, we summarize the relationship between the orbital competitions and some bulk properties for some elements, such as the superconductivity, the optical properties, the mechanical strength, and the chemistry activities. We find that there exist some abnormal orbital competitions for some lowly ionized and neutral atoms which may lead to the unique bulk properties for the element. With the ground state electronic structures of ionized atoms, we can construct the basis of accurate quasi-complete configuration interaction (CI) calculations, and further accurately calculate the physical quantities like the energy levels, transition rates, collision cross section, etc. Therefore we can meet the requirements of scientific researches such as the analysis of high-power free-electron laser experiments and the accurate measurement of the mass of nuclei.
      通信作者: 高翔, xgao@csrc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11274035,11328401)、国家高科技ICF项目、北京应用物理与计算数学研究所和国家重点基础研究发展计划(批准号:2011CB921501)资助的课题.
      Corresponding author: Gao Xiang, xgao@csrc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274035, 11328401) and the National Basic Research Program of China (Grant No. 2011CB921501).
    [1]

    Seaton M J, Opacity Project Team 1995 The Opacity Project (1st Ed.) (Vols. 1 and 2) (Bristol: Institute of Physics Publishing) pp1-592

    [2]

    Dalgarno A 1979 Adv. At. Mol. Opt. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Clark R E H, Reiter D 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions, Springer Series in Chemical Physics (Vol. 78) (Berlin, Heidelberg: Springer) pp135-161

    [7]

    Horton L D 1996 Phys. Scripta T65 175

    [8]

    Qing B, Cheng C, Gao X, Zhang X L, Li J M 2010 Acta Phys. Sin. 59 4547 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 59 4547]

    [9]

    Zhao Z X, Li L M 1985 Chin. Phys. Lett. 2 449

    [10]

    Dong Q, Li J M 1986 Acta Phys. Sin. 35 1634 (in Chinese) [董骐, 李家明 1986 35 1634]

    [11]

    Tong X M, Chu S I 1998 Phys. Rev. A 57 855

    [12]

    Gu C, Jin R, Gao X, Zeng D L, Yue X F, Li J M 2016 Chin. Phys. Lett. 33 043201

    [13]

    Li J M, Zhao Z X 1982 Acta Phys. Sin. 31 97 (in Chinese) [李家明, 赵中新 1982 31 97]

    [14]

    Liberman D A, Cromer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

    [15]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer, M A and Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602

    [16]

    Rodrigues G C, Indelicato P, Santos J P, Patte P, Parente F 2004 At. Data Nucl. Data Tables 86 117

    [17]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [18]

    Jonsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [19]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514

    [20]

    Mazurs E G 1974 Graphic Representations of the Periodic System During One Hundred Years (2nd Ed.) (Chicago: University of Alabama Press) pp2-251

    [21]

    Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y, Qiu Y B 2003 High Power Laser and Particle Beams 15 145 (in Chinese) [易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波 2003 强激光与粒子束 15 145]

    [22]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messercshmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J 2010 Nat. Photon. 4 641

    [23]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715

    [24]

    Marrs R E, Elliott S R, Knapp D A 1994 Phys. Rev. Lett. 72 4082

    [25]

    Nakamura N 2013 Plasma Fusion Res. 8 1101152

    [26]

    Epp S W, Lpez-Urrutia C J R, Brenner G, Mckel V, Mkler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001

    [27]

    Epp S W, Lpez-Urrutia C J R, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 194008

    [28]

    Elliott S R 1995 Nucl. Instrm. Meth. B 98 114

    [29]

    Bernitt S, Brown G V, Rudolph J K, Steinbrgge R, Graf A, Leutenegger M, Epp S W, Eberle S, Kubiček K, Mckel V, Simon M C, Trbert E, Magee E W, Beilmann C, Hell N, Schippers S, Mller A, Kahn S M, Surzhykov A, Harman Z, Keitel C H, Clementson J, Porter F S, Schlotter W, Turner J J, Ullrich J, Beiersdorfer P, Lpez-Urrutia J R C 2012 Nature 492 225

    [30]

    Sokel E, Currell F J, Shimizu H, Ohtani S 1999 Phys. Scripta. T80 289

    [31]

    Wu M K, Ashburn J R, Torng C K, Hor P H, Meng R L, Gao L, Huang Z L, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 9

    [32]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412 (in Chinese) [赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈庚华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412]

    [33]

    Geusic J E, Marcos H M, Uitert L G V 1964 Appl. Phys. Lett. 4 10

    [34]

    Glowacki B A, Yan X Y, Fray D, Chen G, Majoros M, Shi Y 2002 Physica C 372 1315

    [35]

    Nassau K, Levinstein H J 1965 Appl. Phys. Lett. 7 69

    [36]

    Barker A S, Verleur J H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286

    [37]

    Sanz O, Gonzalo J, Perea A, Fernndez-Navarro J M, Afonso C N, Lpez J G 2004 Appl. Phys. A 79 1907

    [38]

    Hardy G F, Hulm J K 1953 Phys. Rev. 89 884

    [39]

    Gschneidner K A, Eyring J L 1979 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: North Holland Publ.) pp1-172

    [40]

    Jensen J, Mackintosh A R 1971 Rare Earth Magnetism Structure and Excitations (Oxford: Clarendon Press) pp50-67

    [41]

    Nishiura S, Tanabe S, Fujioka K, Fujimoto Y 2011 Opt. Mater. 33 688

    [42]

    Wang C H, Lin S S 2004 Appl. Catal. A 268 227

    [43]

    Siegrist K, Brown M R, Bellan P M 1989 Rev. Sci. Instrum. 60 5

    [44]

    Patra R, Ghosh S, Sheremet E, Jha E, Rodriguez R D, Lehmann D, Ganguli A K, Gordan O D, Schmidt H, Schulze S, Zahn D R T, Schmidt O G 2014 J. Appl. Phys. 115 094302

    [45]

    Assmus W, Herrman M, Rauchschwalbe U, Riegel S, Lieke W, Spille H, Horn S, Weber G, Steglich F, Cordier G 1984 Phys. Rev. Lett. 52 469

    [46]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schfer H 1979 Phys. Rev. Lett. 43 1892

    [47]

    Finnemore D K, Johnson D L, Ostenson J E, Spedding F H, Beaudry B J 1965 Phys. Rev. 137 A550

    [48]

    Franzke B, Geissel H, Mnzenberg G 2008 Mass Spectrom. Rev. 27 428

    [49]

    Zeng D L, Gao X, Jin R, Li J M 2014 J. Phys.: Conference Series 488 152006

  • [1]

    Seaton M J, Opacity Project Team 1995 The Opacity Project (1st Ed.) (Vols. 1 and 2) (Bristol: Institute of Physics Publishing) pp1-592

    [2]

    Dalgarno A 1979 Adv. At. Mol. Opt. Phys. 15 37

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79

    [4]

    Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343

    [5]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [6]

    Clark R E H, Reiter D 2005 Nuclear Fusion Research: Understanding Plasma-Surface Interactions, Springer Series in Chemical Physics (Vol. 78) (Berlin, Heidelberg: Springer) pp135-161

    [7]

    Horton L D 1996 Phys. Scripta T65 175

    [8]

    Qing B, Cheng C, Gao X, Zhang X L, Li J M 2010 Acta Phys. Sin. 59 4547 (in Chinese) [青波, 程诚, 高翔, 张小乐, 李家明 2010 59 4547]

    [9]

    Zhao Z X, Li L M 1985 Chin. Phys. Lett. 2 449

    [10]

    Dong Q, Li J M 1986 Acta Phys. Sin. 35 1634 (in Chinese) [董骐, 李家明 1986 35 1634]

    [11]

    Tong X M, Chu S I 1998 Phys. Rev. A 57 855

    [12]

    Gu C, Jin R, Gao X, Zeng D L, Yue X F, Li J M 2016 Chin. Phys. Lett. 33 043201

    [13]

    Li J M, Zhao Z X 1982 Acta Phys. Sin. 31 97 (in Chinese) [李家明, 赵中新 1982 31 97]

    [14]

    Liberman D A, Cromer D T, Waber J T 1971 Comput. Phys. Commun. 2 107

    [15]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Y S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer, M A and Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602

    [16]

    Rodrigues G C, Indelicato P, Santos J P, Patte P, Parente F 2004 At. Data Nucl. Data Tables 86 117

    [17]

    Parpia F A, Fischer C F, Grant I P 1996 Comput. Phys. Commun. 94 249

    [18]

    Jonsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [19]

    Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514

    [20]

    Mazurs E G 1974 Graphic Representations of the Periodic System During One Hundred Years (2nd Ed.) (Chicago: University of Alabama Press) pp2-251

    [21]

    Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y, Qiu Y B 2003 High Power Laser and Particle Beams 15 145 (in Chinese) [易有根, 郑志坚, 颜君, 李萍, 方泉玉, 邱玉波 2003 强激光与粒子束 15 145]

    [22]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messercshmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J 2010 Nat. Photon. 4 641

    [23]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715

    [24]

    Marrs R E, Elliott S R, Knapp D A 1994 Phys. Rev. Lett. 72 4082

    [25]

    Nakamura N 2013 Plasma Fusion Res. 8 1101152

    [26]

    Epp S W, Lpez-Urrutia C J R, Brenner G, Mckel V, Mkler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001

    [27]

    Epp S W, Lpez-Urrutia C J R, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 194008

    [28]

    Elliott S R 1995 Nucl. Instrm. Meth. B 98 114

    [29]

    Bernitt S, Brown G V, Rudolph J K, Steinbrgge R, Graf A, Leutenegger M, Epp S W, Eberle S, Kubiček K, Mckel V, Simon M C, Trbert E, Magee E W, Beilmann C, Hell N, Schippers S, Mller A, Kahn S M, Surzhykov A, Harman Z, Keitel C H, Clementson J, Porter F S, Schlotter W, Turner J J, Ullrich J, Beiersdorfer P, Lpez-Urrutia J R C 2012 Nature 492 225

    [30]

    Sokel E, Currell F J, Shimizu H, Ohtani S 1999 Phys. Scripta. T80 289

    [31]

    Wu M K, Ashburn J R, Torng C K, Hor P H, Meng R L, Gao L, Huang Z L, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 9

    [32]

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412 (in Chinese) [赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈庚华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412]

    [33]

    Geusic J E, Marcos H M, Uitert L G V 1964 Appl. Phys. Lett. 4 10

    [34]

    Glowacki B A, Yan X Y, Fray D, Chen G, Majoros M, Shi Y 2002 Physica C 372 1315

    [35]

    Nassau K, Levinstein H J 1965 Appl. Phys. Lett. 7 69

    [36]

    Barker A S, Verleur J H W, Guggenheim H J 1966 Phys. Rev. Lett. 17 1286

    [37]

    Sanz O, Gonzalo J, Perea A, Fernndez-Navarro J M, Afonso C N, Lpez J G 2004 Appl. Phys. A 79 1907

    [38]

    Hardy G F, Hulm J K 1953 Phys. Rev. 89 884

    [39]

    Gschneidner K A, Eyring J L 1979 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: North Holland Publ.) pp1-172

    [40]

    Jensen J, Mackintosh A R 1971 Rare Earth Magnetism Structure and Excitations (Oxford: Clarendon Press) pp50-67

    [41]

    Nishiura S, Tanabe S, Fujioka K, Fujimoto Y 2011 Opt. Mater. 33 688

    [42]

    Wang C H, Lin S S 2004 Appl. Catal. A 268 227

    [43]

    Siegrist K, Brown M R, Bellan P M 1989 Rev. Sci. Instrum. 60 5

    [44]

    Patra R, Ghosh S, Sheremet E, Jha E, Rodriguez R D, Lehmann D, Ganguli A K, Gordan O D, Schmidt H, Schulze S, Zahn D R T, Schmidt O G 2014 J. Appl. Phys. 115 094302

    [45]

    Assmus W, Herrman M, Rauchschwalbe U, Riegel S, Lieke W, Spille H, Horn S, Weber G, Steglich F, Cordier G 1984 Phys. Rev. Lett. 52 469

    [46]

    Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W, Schfer H 1979 Phys. Rev. Lett. 43 1892

    [47]

    Finnemore D K, Johnson D L, Ostenson J E, Spedding F H, Beaudry B J 1965 Phys. Rev. 137 A550

    [48]

    Franzke B, Geissel H, Mnzenberg G 2008 Mass Spectrom. Rev. 27 428

    [49]

    Zeng D L, Gao X, Jin R, Li J M 2014 J. Phys.: Conference Series 488 152006

  • [1] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] 程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠. Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算.  , 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [3] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算.  , 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [4] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [5] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [6] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [7] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算.  , 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [8] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算.  , 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [9] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [10] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [11] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算.  , 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [12] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算.  , 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [13] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究.  , 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [14] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算.  , 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [16] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算.  , 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [17] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算.  , 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [18] 唐春梅, 袁勇波, 邓开明, 杨金龙. C72,La2@C72几何结构和电子性质的计算研究.  , 2006, 55(7): 3601-3605. doi: 10.7498/aps.55.3601
    [19] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [20] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究.  , 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
计量
  • 文章访问数:  6094
  • PDF下载量:  610
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2016-04-29
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map