搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀激光场中氢分子离子高次谐波的增强

罗香怡 刘海凤 贲帅 刘学深

引用本文:
Citation:

非均匀激光场中氢分子离子高次谐波的增强

罗香怡, 刘海凤, 贲帅, 刘学深

Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field

Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen
PDF
导出引用
  • 通过数值求解非波恩-奥本海默近似下的一维含时薛定谔方程, 研究了蝴蝶结型纳米结构基元中氢分子离子高次谐波的产生. 研究表明, 在蝴蝶结型纳米结构基元内部产生的非均匀场的空间位置对高次谐波的发射有较大影响. 当非均匀场的空间位置从30 a.u. 平移到-30 a.u. 时, 高次谐波的截止位置被延展且形成光滑的超连续的谐波谱, 并应用时频分析方法、经典三步模型以及电离概率等解释了高次谐波发射的物理机理. 研究了高次谐波谱对非均匀场空间位置的依赖性与载波包络值的关系, 发现随着载波包络值的变化, 非均匀场在不同空间位置处的高次谐波谱变化趋势相同.
    High-order harmonic generation (HHG) from the interaction among intense laserfields and atoms and molecules has attracted much attention. It is of the paramount importance and is still a rapidly growing field due to its potential to produce coherent and bright light within the uv and soft X-ray region and to generate attosecond pulses. Generally speaking, a typical spectrum of HHG shows that for the first few harmonics decrease rapidly, then present by a broad plateau of almost constant conversion efficiency, and end up with a sharp cutoff. In a recent experiment, it is verified that the field enhancement induced around the bow-tie elements with a 20-nm gap allows the generation of extremeultraviolet light directly from the output of a single femtosecond oscillator of 100-kW peak power. With the development of the HHG in the vicinity of metallic nanostructure from atomic responses, the harmonic generation in the vicinity of metallic nanostructure from molecules has also been investigated. In this paper, HHG from H2+ in bowtie-shaped nanostructure is investigated by solving the one-dimensional time-dependent Schrdinger equation within the non-Born- Oppenheimer approximation by the splitting-operator fast-Fourier transform technique. We find that the spatial position of the inhomogeneous field inside the nanostructure has a great influence on the harmonic spectrum. When the spatial position of the inhomogeneous field is translated from 30 a.u. to -30 a.u., the cutoff of the HHG can be extended and the smoother supercontinuum harmonic spectrum is formed. The underlying physical mechanism can be well demonstrated by the time-frequency distribution, the three-step model, the ionization probability and electric field of the driving laser. The harmonic order as a function of the ionization time and emission time can be given by the semi-classial three-step model. The trajectory with an earlier ionization time but a later emission time as a long electronic trajectory, and the trajectory with a later ionization time but an earlier emission time as a short electronic trajectory. The interference between the long and the short trajectories will lead to a modulated structure of the supercontinuum. When the spatial position of the inhomogeneous field is translated from 0 a.u. to 30 a.u., the cutoff of the HHG can be shortened and there are short and long electronic trajectories contributing to each harmonics and bringing about more modulations. When the spatial position of the inhomogeneous field is translated from 0 a.u. to -30 a.u., the cutoff of the HHG can be extended and there is only a short electronic trajectory contributing to each harmonics and the smoother supercontinuum harmonic spectrum is formed. The effects of the carrier-envelope phase on HHG is also demonstrated. When the carrierenvelope phase is -0.2, the cutoff of the HHG is extended. When the carrier-envelope phase is -0.2, the cutoff of the HHG is shortened. But we find that with the change of the carrier-envelope phase, their overall trends are the same, that is, the cutoff of the HHG is extended when the spatial position of the inhomogeneous field is translated from 30 a.u. to -30 a.u..
      通信作者: 刘学深, liuxs@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575077, 11271158)资助的课题.
      Corresponding author: Liu Xue-Shen, liuxs@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 61575077, 11271158).
    [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [3]

    Husakou A, Im S J, Herrmann J 2011 Phys. Rev. A 83 043839

    [4]

    Yavuz I 2013 Phys. Rev. A 87 053815

    [5]

    Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210

    [6]

    Zhong H Y, Guo J, Feng W, Li P C, Liu X S 2016 Phys. Lett. A 380 188

    [7]

    Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 64 193201]

    [8]

    Nguyen N T, Hoang V H, Le V H 2013 Phys. Rev. A 88 023824

    [9]

    Kamta G L, Bandrauk A D 2005 Phys. Rev. Lett. 94 203003

    [10]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 053409

    [11]

    Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805

    [12]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [13]

    Han Y C, Madsen L B 2013 Phys. Rev. A 87 043404

    [14]

    Guan X, Bartschat K, Schneider B I, Koesterke L 2013 Phys. Rev. A 88 043402

    [15]

    Yuan K J, Bandrauk A D 2011 Phys. Rev. A 83 063422

    [16]

    Zhang J, Ge X L, Wang T, Xu T T, Guo J, Liu X S 2015 Phys. Rev. A 92 013418

    [17]

    Yavuz I, Tikman Y, Altun Z 2015 Phys. Rev. A 92 023413

    [18]

    Bandrauk A D, Chelkowski S, Kawata I 2003 Phys. Rev. A 67 013407

    [19]

    Lein M, Kreibich T, Gross E K U, Engel V 2002 Phys. Rev. A 65 033403

    [20]

    Hermann M R, Fleck Jr J A 1988 Phys. Rev. A 38 6000

    [21]

    Feit M D, Fleck Jr J A 1983 J. Chem. Phys. 78 301

    [22]

    Antoine P, Piraux B, Maquet A 1995 Phys. Rev. A 51 R1750

  • [1]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [2]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 Nature 453 757

    [3]

    Husakou A, Im S J, Herrmann J 2011 Phys. Rev. A 83 043839

    [4]

    Yavuz I 2013 Phys. Rev. A 87 053815

    [5]

    Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210

    [6]

    Zhong H Y, Guo J, Feng W, Li P C, Liu X S 2016 Phys. Lett. A 380 188

    [7]

    Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 64 193201]

    [8]

    Nguyen N T, Hoang V H, Le V H 2013 Phys. Rev. A 88 023824

    [9]

    Kamta G L, Bandrauk A D 2005 Phys. Rev. Lett. 94 203003

    [10]

    Jin C, Le A T, Lin C D 2011 Phys. Rev. A 83 053409

    [11]

    Pan Y, Zhao S F, Zhou X X 2013 Phys. Rev. A 87 035805

    [12]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [13]

    Han Y C, Madsen L B 2013 Phys. Rev. A 87 043404

    [14]

    Guan X, Bartschat K, Schneider B I, Koesterke L 2013 Phys. Rev. A 88 043402

    [15]

    Yuan K J, Bandrauk A D 2011 Phys. Rev. A 83 063422

    [16]

    Zhang J, Ge X L, Wang T, Xu T T, Guo J, Liu X S 2015 Phys. Rev. A 92 013418

    [17]

    Yavuz I, Tikman Y, Altun Z 2015 Phys. Rev. A 92 023413

    [18]

    Bandrauk A D, Chelkowski S, Kawata I 2003 Phys. Rev. A 67 013407

    [19]

    Lein M, Kreibich T, Gross E K U, Engel V 2002 Phys. Rev. A 65 033403

    [20]

    Hermann M R, Fleck Jr J A 1988 Phys. Rev. A 38 6000

    [21]

    Feit M D, Fleck Jr J A 1983 J. Chem. Phys. 78 301

    [22]

    Antoine P, Piraux B, Maquet A 1995 Phys. Rev. A 51 R1750

  • [1] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制.  , 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [6] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构.  , 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [7] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [8] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生.  , 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [9] 汪礼锋, 贺新奎, 滕浩, 运晨霞, 张伟, 魏志义. 5fs驱动激光脉冲的高次谐波选择性优化.  , 2014, 63(22): 224103. doi: 10.7498/aps.63.224103
    [10] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉.  , 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究.  , 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [13] 曹卫军, 成春芝, 周效信. 原子在双色组合场中产生高次谐波的转换效率与激光波长的关系.  , 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [14] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟.  , 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟.  , 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [17] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟.  , 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移.  , 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 李 昆, 张 杰, 余 玮. 激光与固体靶作用产生高次谐波的振荡镜面模型.  , 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
    [20] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
计量
  • 文章访问数:  6227
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map