搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱相干光源测量设备无关量子密钥分发系统的性能优化分析

吴承峰 杜亚男 王金东 魏正军 秦晓娟 赵峰 张智明

引用本文:
Citation:

弱相干光源测量设备无关量子密钥分发系统的性能优化分析

吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明

Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states

Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming
PDF
导出引用
  • 测量设备无关量子密钥分发系统能够抵御任何针对单光子探测器边信道的攻击, 进一步结合诱惑态的方案, 可以同时规避准单光子源引起的实际安全漏洞. 测量设备无关量子密钥分发系统中, 非对称传输、分束器的不对称以及各个单光子探测器存在实际参数差异等光学系统的具体实现特征会对系统误码率和成码率等性能产生一定的影响. 本文针对采用弱相干光源的测量设备无关量子密钥分发系统, 引入单光子探测器品质因子的实验参数(暗计数与探测效率的比值), 通过量子化描述, 理论推导并模拟了误码率与单光子探测器品质因子、分束器反射率以及通信双方弱相干光源平均光子数之间的关系. 结果表明: 在X基偏振编码 和相位编码系统中, 当分束器的反射率趋近于0.5时, 误码率取最小值; 在偏振编码和相位编码系统中, 误码率随着单光子探测器品质因子的增大而增大; 在Z基偏振编码系统中, 误码率随分束器的反射率的变化会呈现较小的波动, 当分束器的反射率为0.5时, 若通信双方采用的平均光子数相差较大, 则误码率取最大值; 分束器的反射率和平均光子数对误码率的影响在Z基情况下不能等同, 但是对于X基编码和相位编码却能等同.
    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detection side-channel attacks, thus when combined with the decoy-state method, it can avoid the actual security loophole caused by quasisingle- photon source simultaneously. A practical weak coherent source is used as a quasi-single-photon source in the current MDI-QKD experiments; it may contain percentage of vacuum-and multi-photon pulses. Moreover, in order to study how the performance of the threshold detector affects the quantum bit error rate (QBER), we introduce the quality factor (the ratio of the dark count rate to the detection efficiency) of the threshold detector. Here, through taking into account the weak coherent source, the quality factor of the threshold detector and the reflectivity of beam splitter, we deduce and evaluate the gain, the probability for successful Bell measurement, incorrect Bell measurement when Alice and Bob send pulses with different photon numbers which have a high probability to appear in weak coherent source, and then we obtain QBER in combination with the probabilities of different photon number states, besides, we also do some simulations. The simulations show how QBER varies with the reflectivity of beam splitter and the quality factor of the threshold detector when the average photon numbers per pulse from Alice and Bob are symmetric. Furthermore, the simulations show how QBER varies with the average photon number per pulse from Alice when average photon number per pulse from Bob is 0.1. Result shows that QBER is affected by the reflectivity of beam splitter, but QBER cannot reach the minimum value in Z basis encoding scheme when the average photon numbers per pulse from Alice and Bob are both 0.1 and the reflectivity of beam splitter is 0.5, which is different from X basis encoding and phase encoding. In addition, QBER increases with the increase of the quality factor of the threshold detector, which means that better performance of the threshold detector will reduce QBER. We show that QBER in Z basis encoding reaches the minimum value when reflectivity of beam splitter is 0.5 and there is large difference between in average photon number per pulse between two sides. In conclusion, for QBER, the effect from the reflectivity of beam splitter is equal to average photon numbers from the two arms only in X basis encoding and phase encoding. Our work will provide a reference for setting up a system with better performance.
      通信作者: 王金东, wangjd@scnu.edu.cn
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91121023)、国家自然科学基金(批准号:61378012,11374107,60978009,61108039,61401176,61401262)、广东省自然科学基金(批准号:2014A030310205,2015A030313388)、国家重点基础研究发展计划(批准号:2011CBA00200)和广东省应用型科技研发专项资金(批准号:2015B010128012)资助的课题.
      Corresponding author: Wang Jin-Dong, wangjd@scnu.edu.cn
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 11374107, 60978009, 61108039, 61401176, 61401262), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2014A030310205, 2015A030313388), the National Basic Research Program of China (Grant No. 2011CBA00200), and the Application-oriented Special Scientific Research Fund of Application Type of Guangdong Province, China (Grant No. 2015B010128012).
    [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [2]

    Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F 2015 Chin. Phys. B 24 010302

    [3]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [4]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [5]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Zhou R R, Y L 2012 Chin. Phys. B 21 080301

    [7]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2015 IEEE J. Select. Topics Quantum Electron. 21 6600407

    [8]

    Lo H K, Chau H F 1999 Science 283 2050

    [9]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [10]

    Mayers D 2001 J. ACM 48 351

    [11]

    Makarov V, Anisimov A, Skaar J 2006 Phys. Rev. A 74 022313

    [12]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [13]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 073

    [14]

    Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [15]

    Sun S H, Liang L M 2012 Appl. Phys. Lett. 101 071107

    [16]

    Acn A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501

    [17]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501

    [18]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503

    [19]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [20]

    Ma X F, Razavi M 2012 Phys. Rev. A 86 062319

    [21]

    Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y, Han Z F 2013 Phys. Rev. A 88 052333

    [22]

    Wang Y, Bao W S, Li H W, Zhou C, Li Y 2014 Chin. Phys. B 23 080303

    [23]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

    [24]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503

    [25]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 114 069901

    [26]

    Sun Y, Zhao S H, Dong C 2015 Acta Phys. Sin. 64 140304 (in Chinese) [孙颖, 赵尚弘, 东晨 2015 64 140304]

    [27]

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304 (in Chinese) [东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304]

    [28]

    Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W 2013 Phys. Rev. Lett. 111 130502

    [29]

    Sun S H, Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329

    [30]

    Du Y N, Xie W Z, Jin X, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2015 Acta Phys. Sin. 64 110301 (in Chinese) [杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2015 64 110301]

    [31]

    Wang Q, Wang X B 2013 Phys. Rev. A 88 052332

    [32]

    Li M, Zhang C M, Yin Z Q, Chen W, Wang S, Guo G C, Han Z F 2014 Opt. Lett. 39 880

  • [1]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145

    [2]

    Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F 2015 Chin. Phys. B 24 010302

    [3]

    Ma H Q, Wei K J, Yang J H, Li R X, Zhu W 2014 Chin. Phys. B 23 100307

    [4]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [5]

    Zhou Y Y, Zhou X J, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Zhou R R, Y L 2012 Chin. Phys. B 21 080301

    [7]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2015 IEEE J. Select. Topics Quantum Electron. 21 6600407

    [8]

    Lo H K, Chau H F 1999 Science 283 2050

    [9]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [10]

    Mayers D 2001 J. ACM 48 351

    [11]

    Makarov V, Anisimov A, Skaar J 2006 Phys. Rev. A 74 022313

    [12]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [13]

    Qi B, Fung C H F, Lo H K, Ma X 2007 Quantum Inf. Comput. 7 073

    [14]

    Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [15]

    Sun S H, Liang L M 2012 Appl. Phys. Lett. 101 071107

    [16]

    Acn A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501

    [17]

    Gisin N, Pironio S, Sangouard N 2010 Phys. Rev. Lett. 105 070501

    [18]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503

    [19]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [20]

    Ma X F, Razavi M 2012 Phys. Rev. A 86 062319

    [21]

    Zhou C, Bao W S, Chen W, Li H W, Yin Z Q, Wang Y, Han Z F 2013 Phys. Rev. A 88 052333

    [22]

    Wang Y, Bao W S, Li H W, Zhou C, Li Y 2014 Chin. Phys. B 23 080303

    [23]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

    [24]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503

    [25]

    Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y, Yang D X, Wang Z, Liang H, Zhang Z, Zhou N, Ma X F, Chen T Y, Zhang Q, Pan J W 2014 Phys. Rev. Lett. 114 069901

    [26]

    Sun Y, Zhao S H, Dong C 2015 Acta Phys. Sin. 64 140304 (in Chinese) [孙颖, 赵尚弘, 东晨 2015 64 140304]

    [27]

    Dong C, Zhao S H, Zhang N, Dong Y, Zhao W H, Liu Y 2014 Acta Phys. Sin. 63 200304 (in Chinese) [东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵 2014 63 200304]

    [28]

    Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W 2013 Phys. Rev. Lett. 111 130502

    [29]

    Sun S H, Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329

    [30]

    Du Y N, Xie W Z, Jin X, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2015 Acta Phys. Sin. 64 110301 (in Chinese) [杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2015 64 110301]

    [31]

    Wang Q, Wang X B 2013 Phys. Rev. A 88 052332

    [32]

    Li M, Zhang C M, Yin Z Q, Chen W, Wang S, Guo G C, Han Z F 2014 Opt. Lett. 39 880

  • [1] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法.  , 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议.  , 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [3] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [4] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器.  , 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [5] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议.  , 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [6] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究.  , 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [7] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议.  , 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [8] 马婧, 刘冬冬, 王继成, 冯延. 基于金属狭缝阵列的各向异性偏振分束器.  , 2018, 67(9): 094102. doi: 10.7498/aps.67.20172292
    [9] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [10] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [11] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析.  , 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [12] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [13] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究.  , 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [14] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究.  , 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [15] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器.  , 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [16] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 一种基于确定性量子密钥分发误码判据的相位调制器半波电压的精确测定方法.  , 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [17] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响.  , 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [18] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [19] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统.  , 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  7533
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-02-12
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map