搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向成本-收益好的无标度耦合网络构建方法

金学广 寿国础 胡怡红 郭志刚

引用本文:
Citation:

面向成本-收益好的无标度耦合网络构建方法

金学广, 寿国础, 胡怡红, 郭志刚

A toward cost-effective scale-free coupling network construction method

Jin Xue-Guang, Shou Guo-Chu, Hu Yi-Hong, Guo Zhi-Gang
PDF
导出引用
  • 较大平均路径长度的网络会带来较大的网络延迟, 难以支持时间敏感业务与应用. 通过增加连接可以降低源和目的节点之间的跳数, 进而降低网络平均延迟, 使得更加快速地传播信息, 但是增加连接的同时也增加了网络构建成本. 分层网络是研究网络耦合的一个有效方法, 但目前网络构建过程中将每层网络分别处理并认为每层网络之间没有强相关性. 本文提出了一种面向成本-收益的无标度网络动态构建方法. 此方法将网络分为多层, 基于连续论在高层网络中添加连接, 使得网络演化为无标度网络. 此连续过程包括节点度增加过程和局部网络半径增长两个连续过程, 在增加连接的过程中引入表征网络构建成本和收益的成本-收益指标. 模拟结果表明引入成本-收益指标的无标度耦合网络构建方法能够在合理范围内有效降低网络平均路径长度, 提升网络性能, 并且本文给出了耦合网络的动态业务性能, 通过调整高层网络避免网络拥塞.
    Large network average path length will cause large network delay which brings difficulty in supporting the time sensitive services and applications. Large hop distance between source node and destination node in traditional network leads to significant network delay. By adding long-ranged links, path length from source node to destiny node will be reduced and original network can be transformed into a scale-free network with a small network average path length. The network delay is optimized by minimizing hop distance, in which information can transfer more efficiently and rapidly. Adding links can lower network delay effectively, but on the other hand, it will increase its cost. Common network construction methods focus on separating networks that are very different from each other and mostly unaware of each other, such as fixed and mobile networks planning. But in many real networks, networks are dependent on each other; therefore ignoring these network interactions cannot become more efficient. Cost and effectiveness play a key role in real network construction and layering network is an effective way to analyze coupling network especially in heterogeneous network. In this paper, the model of a toward cost-effective scale-free coupling network construction method is proposed. It combines the advantages of layered network and cost-effective network. A layered coupling network model is established in which network is divided into several networks based on link property. Links in the same layer have the same property and the upper layer capability is higher than lower layer capability. The nodes in the upper network are selected from the lower layer network coupling with the corresponding nodes with the same spatial location. Based on the network optimization and evolving network researches, the increases of node degree and local network radius are supposed to be continuous, moreover cost-effective indicator is introduced which characterizes the costs and effectiveness of adding links. Based on continuum, links are added to upper layer network with a certain probability by two continuous processes and thus network evolves into a scale-free network. The two continuous processes include node degree increasing process and local network radius increasing process. In the previous processes, cost-effective indicator is introduced and only the links satisfied cost-effectiveness are added. Cost-effective indicator characterizes the cost and effectiveness of network construction. Cost is proportional to Euclidean distance and effectiveness includes revenue of network average path length decreasing and link property benefit. In the coupling network, traffic prefers to transmit in the upper layer network for reducing network latency, and consequently leading to traffic congestion in upper layer. In the simulation, network topology evolution and dynamic traffic performance are evaluated. The simulation result shows that this method can effectively reduce the network latency within cost-effective requirement and initial network characteristics are maintained. The results also show that the network average path length declines slowly when network average path length is small because lower average path length needs higher cost when average path length is small. To investigate the traffic behaviors in the coupled layered networks, the traffic dynamic transition model is taken and dynamic traffic performance is given in this evolved scale-free network. Moreover, the cooperation between the two layers can be used to optimize network traffic performance by adjusting the link capacity to satisfy the requirements for the network congestion.
      通信作者: 金学广, xueguang.jin@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61240040, 61471053)资助的课题.
      Corresponding author: Jin Xue-Guang, xueguang.jin@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61240040, 61471053).
    [1]

    Ling X, Hu M B, Long J C, Ding J X, Shi Q 2013 Chin. Phys. B 22 018904

    [2]

    Douik A, Dahrouj H, Al-Naffouri T Y, Alouini M S 2015 arXiv preprint arXiv: 1508 00140

    [3]

    Saha S, Nandi S, Paul P S, Shah V K, Roy A, Das S K 2015 Ad. Hoc. Network 25 406

    [4]

    Liu S X, Ji X S, Liu C X, Guo H 2014 Acta Phys. Sin. 63 158902(in Chinese) [刘树新,季新生,刘彩霞,郭虹 2014 63 158902]

    [5]

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 8(in Chinese) [郭进利,祝昕昀 2014 63 8]

    [6]

    Wang Y, Yang X R 2015 Chin. Phys. B 24 118902

    [7]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [8]

    Barabsi A L, Albert R 1999 Science 286 509

    [9]

    Liu Z, Hu M B, Jiang R, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [10]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [11]

    Huang W, Chow T W 2010 J. Stat. Mech. 2010 01016

    [12]

    Dai Q L, Shou G C, Hu Y H, Guo Z G 2013 Proceedings of the 78th Vehicular Technology Conference (VTC Fall) Las Vegas, NV, USA, September 2-5, 2013 p1

    [13]

    Chen S, Huang W, Cattani C, Altieri G 2011 Math. Probl. Eng. 2012 732698

    [14]

    Milgram S 1967 Psychology Today 1 61

    [15]

    Fall K 2003 Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications Karlsruhe, Germany, August 25-29, 2003 p27

    [16]

    Santi P 2005 CSUR 37 164

    [17]

    Yigitel M A, Incel O D, Ersoy C 2014 EURASIP J. Wirel. Commun. Netw. 2014 1

    [18]

    Gerstel O, Filsfils C, Telkamp T, Gunkel M, Horneffer M, Lopez V, Mayoral A 2014 IEEE Commun. Mag. 52 44

    [19]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [20]

    Saumell-Mendiola A, Serrano M , Bogu M 2012 Phys. Rev. E 86 026106

    [21]

    Morris R G, Barthelemy M 2012 Phys. Rev. Lett. 109 28703

    [22]

    Newman M E J 2003 SIAM review 45 167

    [23]

    Barabsi A L, Albert R, Jeong H 1999 Phys. A 272 173

    [24]

    Arenas A, Daz-Guilera A, Guimera R 2001 Phys. Rev. Lett. 86 3196

  • [1]

    Ling X, Hu M B, Long J C, Ding J X, Shi Q 2013 Chin. Phys. B 22 018904

    [2]

    Douik A, Dahrouj H, Al-Naffouri T Y, Alouini M S 2015 arXiv preprint arXiv: 1508 00140

    [3]

    Saha S, Nandi S, Paul P S, Shah V K, Roy A, Das S K 2015 Ad. Hoc. Network 25 406

    [4]

    Liu S X, Ji X S, Liu C X, Guo H 2014 Acta Phys. Sin. 63 158902(in Chinese) [刘树新,季新生,刘彩霞,郭虹 2014 63 158902]

    [5]

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 8(in Chinese) [郭进利,祝昕昀 2014 63 8]

    [6]

    Wang Y, Yang X R 2015 Chin. Phys. B 24 118902

    [7]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [8]

    Barabsi A L, Albert R 1999 Science 286 509

    [9]

    Liu Z, Hu M B, Jiang R, Wang W X, Wu Q S 2007 Phys. Rev. E 76 037101

    [10]

    Zhang G Q, Wang D, Li G J 2007 Phys. Rev. E 76 017101

    [11]

    Huang W, Chow T W 2010 J. Stat. Mech. 2010 01016

    [12]

    Dai Q L, Shou G C, Hu Y H, Guo Z G 2013 Proceedings of the 78th Vehicular Technology Conference (VTC Fall) Las Vegas, NV, USA, September 2-5, 2013 p1

    [13]

    Chen S, Huang W, Cattani C, Altieri G 2011 Math. Probl. Eng. 2012 732698

    [14]

    Milgram S 1967 Psychology Today 1 61

    [15]

    Fall K 2003 Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications Karlsruhe, Germany, August 25-29, 2003 p27

    [16]

    Santi P 2005 CSUR 37 164

    [17]

    Yigitel M A, Incel O D, Ersoy C 2014 EURASIP J. Wirel. Commun. Netw. 2014 1

    [18]

    Gerstel O, Filsfils C, Telkamp T, Gunkel M, Horneffer M, Lopez V, Mayoral A 2014 IEEE Commun. Mag. 52 44

    [19]

    Tan F, Xia Y X, Zhang W P, Jin X Y 2013 EPL 102 28009

    [20]

    Saumell-Mendiola A, Serrano M , Bogu M 2012 Phys. Rev. E 86 026106

    [21]

    Morris R G, Barthelemy M 2012 Phys. Rev. Lett. 109 28703

    [22]

    Newman M E J 2003 SIAM review 45 167

    [23]

    Barabsi A L, Albert R, Jeong H 1999 Phys. A 272 173

    [24]

    Arenas A, Daz-Guilera A, Guimera R 2001 Phys. Rev. Lett. 86 3196

  • [1] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究.  , 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力.  , 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [3] 杨先霞, 濮存来, 许忠奇, 陈荣斌, 吴洁鑫, 李伦波. 无标度网络中基于能量的混合路由策略.  , 2016, 65(24): 248901. doi: 10.7498/aps.65.248901
    [4] 胡耀光, 王圣军, 金涛, 屈世显. 度关联无标度网络上的有倾向随机行走.  , 2015, 64(2): 028901. doi: 10.7498/aps.64.028901
    [5] 刘浩然, 尹文晓, 韩涛, 董明如. 一种优化无线传感器网络生命周期的容错拓扑研究.  , 2014, 63(4): 040509. doi: 10.7498/aps.63.040509
    [6] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究.  , 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [7] 郭进利, 祝昕昀. 超网络中标度律的涌现.  , 2014, 63(9): 090207. doi: 10.7498/aps.63.090207
    [8] 王亚奇, 蒋国平. 考虑网络流量的无标度网络病毒免疫策略研究.  , 2011, 60(6): 060202. doi: 10.7498/aps.60.060202
    [9] 濮存来, 裴文江, 缪瑞华, 周思源, 王开. 无标度网络上队列资源分配研究.  , 2010, 59(9): 6009-6013. doi: 10.7498/aps.59.6009
    [10] 何敏华, 张端明, 王海艳, 李小刚, 方频捷. 基于无标度网络拓扑结构变化的舆论演化模型.  , 2010, 59(8): 5175-5181. doi: 10.7498/aps.59.5175
    [11] 刘甲雪, 孔祥木. 无标度立体Koch网络的建立及其结构性质研究.  , 2010, 59(4): 2244-2249. doi: 10.7498/aps.59.2244
    [12] 马丽娟, 唐明, 梁小明. 在无标度网络上基于偏好聚集机理的零区域凝聚现象.  , 2009, 58(1): 83-89. doi: 10.7498/aps.58.83
    [13] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略.  , 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [14] 王延, 郑志刚. 无标度网络上的传播动力学.  , 2009, 58(7): 4421-4425. doi: 10.7498/aps.58.4421
    [15] 裴伟东, 刘忠信, 陈增强, 袁著祉. 无标度网络中最大传染能力限定的病毒传播问题研究.  , 2008, 57(11): 6777-6785. doi: 10.7498/aps.57.6777
    [16] 郭进利. 新节点的边对网络无标度性影响.  , 2008, 57(2): 756-761. doi: 10.7498/aps.57.756
    [17] 杜海峰, 李树茁, W. F. Marcus, 悦中山, 杨绪松. 小世界网络与无标度网络的社区结构研究.  , 2007, 56(12): 6886-6893. doi: 10.7498/aps.56.6886
    [18] 郭进利, 汪丽娜. 幂律指数在1与3之间的一类无标度网络.  , 2007, 56(10): 5635-5639. doi: 10.7498/aps.56.5635
    [19] 潘灶烽, 汪小帆. 一种可大范围调节聚类系数的加权无标度网络模型.  , 2006, 55(8): 4058-4064. doi: 10.7498/aps.55.4058
    [20] 闫 栋, 祁国宁. 大规模软件系统的无标度特性与演化模型.  , 2006, 55(8): 3799-3804. doi: 10.7498/aps.55.3799
计量
  • 文章访问数:  6923
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-06
  • 修回日期:  2016-02-03
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map