-
在单向温度场条件下, 采用不同抽拉速度实现了聚乙二醇6000的定向生长、界面形貌的实时观测及界面温度的测量, 进而揭示了其生长机制. 实验结果表明, 随着抽拉速度的增大, 界面的温度逐渐减小, 过冷度逐渐增大. 运用高聚物结晶的次级形核理论模型, 对实验数据进行了计算, 得到在界面过冷度为13.5 K左右时, 生长机制发生了由区域Ⅱ向区域Ⅲ的转变. 实验数据与等温结晶数据的比较发现等温结晶方法中获得过冷度相对较大, 是因为其包含了热过冷. 聚乙二醇6000定向结晶过程中需要的最大动力学过冷度为20 K, 说明由于高聚物的二维形核, 其生长主要由界面动力学控制, 具有较强的动力学效应.Interface characterizes describes how the atoms/molecules attach themselves to the solid/liquid interface from the liquid when the crystallization takes place, which plays a key role in revealing the kinetic mechanism during the crystal growth. For common non-facet/non-facet metallic systems, the kinetic undercooling is usually small and it becomes only significant when the growth velocity is high. However, high growth velocity can be usually realized under large undercooling condition. In this case, the interface temperature cannot be measured, thus the kinetic undercooling cannot be determined quantitatively either. Compared with the atom and small molecule materials, the polymer has its distinctive characteristic of different long chains, which are entangled together in a liquid state. Thus the crystallization of the polymer system usually proceeds in the two-dimensional manner, which provides an ideal way to obtain large kinetic undercooling under the small growth velocity condition. The directional crystallization technique has been widely adopted to study the scaling law of undercooling and growth velocity due to its accurate controlling of growth velocity and temperature gradient. Therefore, it offers an appropriate way to make a quantitative investigation. In this paper, the in-situ observations of the solidification of polyethylene glycol 6000 at different pulling velocities are performed and the interface temperature is examined as well by using the directional crystallization technique. The effect of the pulling rate on the growth kinetics is examined. The results reveal that the interface temperature decreases and the undercooling increases gradually with the pulling velocity increasing. A change in the growth regime is observed at T=13.5 K, where regime Ⅱ-regime Ⅲ transition occurs according to Hoffman's kinetic theory of polymer crystallization. The comparison of undercooling between the present work and DSC isothermal crystallization is made, and it shows that the data obtained in the directional growth and the isothermal growth follow the same trends but the undercooling in isothermal growth is larger than in directional growth under the same growth velocity. This indicates that the undercooling in the latter case is over-estimated since it contains the thermal undercooling. Undercooling is the driving force for crystallization, which usually includes solute undercooling, curvature undercooling, thermal undercooling, and kinetic undercooling. Because of the flat interface and the pure material, there is no solute undercooling nor curvature cooling in the present case. The thermal undercooling is also zero in the unidirectional crystallization process. Thus the total undercooling in the present work is the kinetic undercooling. The maximum kinetic undercooling reaches 20 K, indicating that the interface kinetic controlling growth takes place due to the two-dimensional nucleation in polymer.
-
Keywords:
- crystallization kinetics /
- kinetic undercooling /
- directional crystallization /
- polyethylene glycol 6000
[1] Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34
[2] Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422
[3] Maitra T, Gupta S P 2002 Mater. Charact. 49 293
[4] Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823
[5] Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614
[6] Hoffman J D 1983 Polymer 24 3
[7] Hoffman J D 1973 J. Appl. Phys. 44 4430
[8] Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949
[9] Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822
[10] Lu X F, Hay J N 2001 Polymer 42 9423
[11] Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31
[12] Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283
[13] Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695
[14] Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362
[15] Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29
[16] Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 62 218103]
[17] Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]
[18] Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048
[19] Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261
[20] Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465
[21] Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]
[22] Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]
[23] Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 53 3971]
[24] Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 53 3978]
[25] Craig D Q M 1995 Thermochim. Acta 248 189
[26] Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327
[27] Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959
-
[1] Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34
[2] Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422
[3] Maitra T, Gupta S P 2002 Mater. Charact. 49 293
[4] Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823
[5] Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614
[6] Hoffman J D 1983 Polymer 24 3
[7] Hoffman J D 1973 J. Appl. Phys. 44 4430
[8] Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949
[9] Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822
[10] Lu X F, Hay J N 2001 Polymer 42 9423
[11] Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31
[12] Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283
[13] Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695
[14] Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362
[15] Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29
[16] Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 62 218103]
[17] Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 62 108103]
[18] Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048
[19] Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261
[20] Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465
[21] Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]
[22] Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]
[23] Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 53 3971]
[24] Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 53 3978]
[25] Craig D Q M 1995 Thermochim. Acta 248 189
[26] Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327
[27] Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959
计量
- 文章访问数: 6322
- PDF下载量: 164
- 被引次数: 0