-
本文以aug-cc-pv5Z为基组, 采用考虑Davidson修正的多参考组态相互作用方法(MRCI+Q)得到了GeS分子基态(X1+)和5个低激发态(11, 11, A1, 15+, 25+)的势能曲线. 计算结果表明: 25+态为排斥态, 其余5个态为束缚态; 6个态有着共同的离解通道, 离解极限均为Ge(3P)+S(3P). 利用计算得到的势能曲线得了X1+, 11-, 11, A1和15+态的垂直跃迁能Te, 平衡键长Re, 离解能De, 谐振频率e, 非谐性常数exe及平衡位置的电偶极矩. X1+态的Re 为2.034 , De 为5.728 eV, e为571.73 cm-1, exe为1.6816 cm-1, 平衡位置的电偶极矩为1.9593 Debye. 激发态11, 11, A1, 15+的Te 依次为25904.81, 26209.22, 32601.19, 43770.26 cm-1; Re依次为2.313, 2.322, 2.188, 2.8790 ; De依次为2.524, 2.487, 1.694, 0.3036 eV, e依次为358.90, 353.08, 376.32, 134.96 cm-1; exe依次为1.2421, 1.2151, 1.6608, 1.9095 cm-1; 平衡位置的电偶极矩依次为1.3178, 1.4719, 1.5917, -1.9785 Debye. 通过求解核运动的薛定谔方程得到了J=0时X1+, 11-, 11, A1和15+态前30个振动态的振动能级Gv和分子常数Bv, 得到的结果和已有的实验值及其他理论值符合较好.The potential energy curves (PECs) for ground state (X1+) and five low-lying electronic states (11-, 11, A1, 15+, 25+) of the GeS molecule have been studied by multi-reference configuration interaction (MRCI) plus Davidson correction (+Q) with all-electron basis set aug-cc-pv5Z. Results show that the 25+ state is an unstable repulsive state, and the others are bound states, and the six electronic states are dissociated along the same channel, Ge(3P)+S(3P). The adiabatic transition energy Te equilibrium bond length Re, dissociation energy De, harmonic frequency e, anharmonic constant exe, and equilibrium dipole moments are obtained by fitting the PECs for the X1+, 11-, 11, A1 and 15+ states. While Re is 2.034 , De 5.728 eV, e 571.73 cm-1, exe 1.6816 cm-1, the equilibrium dipole moment is 1.9593 Debye for the ground state. The values of Te are 25904.81, 26209.22, 32601.19, 43770.26 cm-1 for 11, 11, A1 and 15+ states, respectively; the values of Re are 2.313, 2.322, 2.188, 2.8790 for 11, 11, A1 and 15+ states, respectively; the values of De are 2.524, 2.487, 1.694, 0.3036 eV for 11-, 11, A1 and 15+ states, respectively; the values of e are 358.90, 353.08, 376.32, 134.96 cm-1 for 11-, 11, A1 and 15+ states, respectively; the values of exe are 1.2421, 1.2151, 1.6608, 1.9095 cm-1 for 11, 11, A1 and 15+ states, respectively, and the values of equilibrium dipole moments are 1.3178, 1.4719, 1.5917, -1.9785 Debye for 11-, 11, A1 and 15+ states, respectively. By solving the radial Schrdinger equation of nuclear motion, the 30 vibration levels and 30 inertial rotation constants (J=0) for X1+, 11-, 11, A1 and 15+ states are also obtained, and all of are in good agreement with the available experimental and other theoretical values.
[1] Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697
[2] Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207
[3] Singh J P, Bedi R K 1991 Thin Solid Films 199 9
[4] Loferski J J 1956 J. Appl. Phys. 27 777
[5] Parentau M, Carlone M 1990 Phys. Rev. B 41 5227
[6] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 62 043101]
[7] Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354
[8] Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143
[9] Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25
[10] Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149
[11] Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395
[12] Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140
[13] Ogilvie J F 1996 Mol. Phys. 88 1055
[14] Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217
[15] Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429
[16] Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189
[17] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[18] Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522
[19] Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232
[20] Shi D H 2011 J. Mol. Spectrosc. 269 143
[21] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)
[22] Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009
[23] Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663
[24] Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358
[25] Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667
[26] Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 63 083102]
[27] Linton C 1980 J. Mol. Spectrosc. 79 90
[28] Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622
[29] Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 64 123101]
[30] Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521
[31] Molski M 1999 J. Mol. Spectrosc. 193 244
-
[1] Wiley J D, Buckel W J, Braun W, Fehrenbach G W, Himpsel F J, Koch E E 1976 Phys. Rev. B 14 697
[2] Dipankar G, Kalyan K D 2005 J. Phys. Chem. A 109 7207
[3] Singh J P, Bedi R K 1991 Thin Solid Films 199 9
[4] Loferski J J 1956 J. Appl. Phys. 27 777
[5] Parentau M, Carlone M 1990 Phys. Rev. B 41 5227
[6] Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 043101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略 2013 62 043101]
[7] Shapiro C V, Gibbs R C, Laubengayer A W 1932 Phys. Rev. 40 354
[8] Magat P, Floch A C L, Lebreton J 1980 J. Phys. B 13 4143
[9] Shetty B J, Krishnakumar S, Balasubramanian T K 2001 J. Mol. Spectrosc. 207 25
[10] Uehara H, Horiai K, Sueoka K, Nakagawa K 1989 Chem. Phys. Lett. 160 149
[11] Uehara H, Horiai K, Ozaki Y, Konno T 1995 J. Mol. Struct. 352-353 395
[12] Coppens P, Smoes S, Drowart J 1967 Trans. Faraday Soc. 63 2140
[13] Ogilvie J F 1996 Mol. Phys. 88 1055
[14] Hoeft J, Lovas F J, Tiemann E, Tischer R, Trring T 1969 Z. Naturforsch 24a 1217
[15] Koppe R, Schnockel H 1990 J. Mol. Struct. 238 429
[16] Leszczynski J, Kwiatkowski J S 1993 J. Phys. Chem. 97 12189
[17] Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408
[18] Jalbout A F, Xin-hua L, Abou-Rachid H 2007 J. Quantum. Chem. 107 522
[19] Dutta A, Chattopadhyaya S, Das K K 2001 J. Phys. Chem. A 105 3232
[20] Shi D H 2011 J. Mol. Spectrosc. 269 143
[21] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol.4) (New York: Van Nostrand Reinhold)
[22] Werner H J, Knowles P J, Amos R D, Bernhardsson A, Berning A, Celani P, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Korona T, Lindh R, Lloyd A W, McNicholas S J, Manby F R, Meyer W, Mura M E, Nicklass A, Palmieri P,Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T 2009 MOLPRO, a package of ab initio programs designed by Werner H J, Knowles P J. Version 2009
[23] Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels' University of Waterloo Chemical Physics Research Report No. CP-663
[24] Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358
[25] Wilson A K, Woon D E, Peterson K A, Dunning T H 1999 J. Chem. Phys. 110 7667
[26] Huang D H, Wang F H, Yang J S, Wan M J, Cao Q L, Yang M C 2014 Acta Phys. Sin. 63 083102 (in Chinese) [黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超 2014 63 083102]
[27] Linton C 1980 J. Mol. Spectrosc. 79 90
[28] Balfour W J, Shetty B J 1993 Can. J. Chem. 71 1622
[29] Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 64 123101]
[30] Wang M W, Wang B W, Chen Z D 2008 Sci. China: Series B: Chemistry 51 521
[31] Molski M 1999 J. Mol. Spectrosc. 193 244
计量
- 文章访问数: 6452
- PDF下载量: 241
- 被引次数: 0