-
采用水热合成法制备出Fe2(MoO4)3样品, 并用高温X-射线衍射、热重和差示扫描量热同步热分析仪对其进行表征, 发现样品在510 ℃附近发生低温单斜相和高温正交相之间的可逆相变, 且正交相表现出负膨胀特征. 采用第一性原理计算了正交相Fe2(MoO4)3 的原子、电子结构以及声子谱、声子态密度, 并和可获得的实验结果进行了系统的比较. 结果显示正交相Fe2(MoO4)3中MoO4四面体较之FeO6八面体具有更强的刚性. 发现最低频的光学支处具有最负的格林乃森(Grneisen)系数, MoO4四面体和FeO6 八面体相连的桥氧原子的横向振动、FeO6八面体柔性扭曲转动以及MoO4四面体的刚性翻转共同导致了Fe2(MoO4)3负膨胀现象的发生.
-
关键词:
- Fe2(MoO4)3 /
- 声子模 /
- 负膨胀 /
- 第一性原理
Monoclinic Fe2(MoO4)3 sample is synthesized by the hydrothermal method, and characterized via high temperature X-ray diffraction and thermogravimetric-differential scanning calorimetry. It is observed that the reversible phase transition between the low-temperature monoclinic and high-temperature orthorhombic phases occurs at about 510 ℃. The cell parameters at different temperatures are calculated by the Rietveld refinement method. In a temperature range from 25 ℃ to 400 ℃, the a, b and c crystallographic axes with the monoclinic phase gradually expand. On the other hand, in a temperature range from 530 ℃ to 710 ℃, the orthorhombic phase exhibits a negative thermal expansion (NTE) behavior, in which the b and c axes gradually contract but the a axis first contracts and then expands a little. Atomic and electronic structures are investigated using first-principle calculation. Results indicate that the Mo-O bonds are much stronger than the Fe-O bonds in Fe2(MoO4)_{3} and the MoO4 tetrahedrons are more rigidly than FeO6 octahedrons. To reveal the relationship between NTE and polyhedral distortion, the phonon density of state of Fe2(MoO4)3 is calculated using the ab initio method. The experimental Raman spectrum positions can be identified in the calculated dispersion of the total phonon density of states (DOS). Meanwhile, by calculating the Grneisen parameters for phonon branches at point, the optical branch with the lowest vibration frequency is believed to have the largest negative Grneisen parameter. Furthermore, we analyze the vibrational behaviors of atoms, and find that oxygen atoms have different vibrational eigenvectors from Fe or Mo atoms. and more obvious amplitudes than Fe or Mo atoms. Therefore, it is concluded that the transverse vibration of the oxygen bridge atom between the MoO4 tetrahedron and FeO6 octahedron, the soft distortion of FeO6 octahedrons, and the rigid rotation of MoO4 tetrahedrons jointly lead to the negative thermal expansion of Fe2(MoO4)3,.-
Keywords:
- Fe2(MoO4)3 /
- phonon mode /
- negative thermal expansion /
- first principles calculations
[1] Guillaume C E 1905 Nature 71 134
[2] Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234
[3] Sleight A 2003 Nature 425 674
[4] Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001
[5] Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914
[6] Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100
[7] Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614
[8] Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259
[9] Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]
[10] Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90
[11] Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301
[12] Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508
[13] Mounet N, Marzari N 2005 Phys. Rev. B 71 205214
[14] Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912
[15] Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
[16] Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63
[17] Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522
[18] Hummel F A 1951 J. Am. Ceram. Soc. 34 235
[19] Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83
[20] Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901
[21] 21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207
[22] Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148
[23] Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250
[24] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102
[25] Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501
[26] Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849
[27] Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810
[28] Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503
[29] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409
[30] Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724
[31] Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746
[32] Harrison W T 1995 Mater. Res. Bull. 30 1325
[33] Blchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467
[37] Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382
[40] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[41] Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[42] Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 60 028201]
[43] Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]
[44] Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387
[45] Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302
[46] Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582
[47] Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224
-
[1] Guillaume C E 1905 Nature 71 134
[2] Tran K D, Groshens T J, Nelson J G 2001 Mater. Sci. Eng. A 303 234
[3] Sleight A 2003 Nature 425 674
[4] Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001
[5] Chen J, Xing X R, Liu G R, Li J H, Liu Y T 2006 Appl. Phys. Lett. 89 101914
[6] Patwe S J, Achary S N, Mathews M D, Tyagi A K 2005 J. Alloys Compd. 390 100
[7] Chen J, Xing X R, Yu R B, Liu G R, Wu L, Chen X L 2004 J. Mater. Res. 19 3614
[8] Chen J, Xing X R, Deng J X, Liu G R 2004 J. Alloys Compd. 372 259
[9] Liu F S, Chen X P, Xie H X, Ao W Q, Li J Q 2010 Acta Phys. Sin. 59 3350 (in Chinese) [刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦 2010 59 3350]
[10] Mary T A, Evans J S O, Vogt T, Sleight A W 1996 Science 272 90
[11] Goodwin A L, Kepert C J 2005 Phys. Rev. B 71 140301
[12] Woodcock D A, Lightfoot P, Villaescusa L A, Daz-Cabaas M J, Camblor M A, Engberg D 1999 Chem. Mater. 11 2508
[13] Mounet N, Marzari N 2005 Phys. Rev. B 71 205214
[14] Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912
[15] Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
[16] Welche P R L, Heine V, Dove M T 1998 Phys. Chem. Miner. 26 63
[17] Chen J, Hu L, Deng J X, Xing X R 2015 Chem. Soc. Rev. 44 3522
[18] Hummel F A 1951 J. Am. Ceram. Soc. 34 235
[19] Agrawal D K, Roy R, McKinstry H A 1987 Mater. Res. Bull. 22 83
[20] Wang F, Xie, Y, Chen J, Fu H, Xing X 2013 Appl. Phys. Lett. 103 221901
[21] 21 Tyagi A K, Achary S N, Mathews M D 2002 J. Alloys Compd. 339 207
[22] Evans J S O, Mary T A, Sleight A W 1998 J. Solid State Chem. 137 148
[23] Wang Z P, Song W B, ZHAO Y, Jiang Y J, Liang E J 2011 The Journal of Light Scattering 23 250
[24] Wu M M, Peng J, Zu Y, Liu R D, Hu Z B, Liu Y T, Chen D F 2012 Chin. Phys. B 21 116102
[25] Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501
[26] Song W B, Yuan, B H, Liu X H, Li Z Y, Wang J Q, Liang E J 2014 J. Mater. Res. 29 849
[27] Yue J L, Zhou Y N, Shi S Q, Shadike Z L P Y, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810
[28] Gava V, Martinotto A L, Perottoni C A 2012 Phys. Rev. Lett. 109 195503
[29] Huang L F, Gong P L, Zeng Z 2014 Phys. Rev. B 90 045409
[30] Wang L, Wang F, Yuan P F, Sun Q, Liang E J, Jia Y, Guo Z X 2013 Mater. Res. Bull. 48 2724
[31] Ding Y, Yu S H, Liu C, Zang Z A 2007 Chem. Eur. J. 13 746
[32] Harrison W T 1995 Mater. Res. Bull. 30 1325
[33] Blchl P E 1994 Phys. Rev. B 50 17953
[34] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467
[37] Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[39] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 382
[40] Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106
[41] Parlinski K, Li Z Q, Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[42] Xin X G, Chen X, Zhou J J, Shi S Q 2011 Acta Phys. Sin. 60 028201 (in Chinese) [忻晓桂, 陈香, 周晶晶, 施思齐 2011 60 028201]
[43] Fang J X, Lu D 1982 Solid State Physics (Vol. 1) (Shanghai: Shanghai Scientific Technical Publishers) p143 (in Chinese) [方俊鑫, 陆栋 1982 固体物理学(上册) (上海: 上海科学技术出版社) 第143页]
[44] Xu Q, Jia G, Zhang J, Feng Z, Li C 2008 J. Phys. Chem. C 112 9387
[45] Ravindran T R, Arora A K, Chandra S, Valsakumar M C, Shekar N C 2007 Phys. Rev. B 76 054302
[46] Liang E J, Liang Y, Zhao Y, Liu J, Jiang Y 2008 J. Phys. Chem. A 112 12582
[47] Weller M T, Henry P F, Wilson C C 2000 J. Phys. Chem. B 104 12224
计量
- 文章访问数: 6621
- PDF下载量: 274
- 被引次数: 0