搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非自治物质畸形波的传播操控

张解放 戴朝卿

引用本文:
Citation:

非自治物质畸形波的传播操控

张解放, 戴朝卿

Control of nonautonomous matter rogue waves

Zhang Jie-Fang, Dai Chao-Qing
PDF
导出引用
  • 研究了(1+1)维的变系数Gross-Pitaevskii方程, 获得了该方程的精确畸形波解. 基于该精确畸形波解, 深入研究了非自治物质畸形波在随时间指数变化的相互作用下的传播动力学行为, 发现非自治畸形波除具有“来无影、去无踪”的不可预测特性外, 也可实现完全激发、抑制激发以及维持激发等操控. 研究表明, 畸形波操控的关键是对累积时间的最大值Tmax 与峰值位置T0 (或TI,TII)值大小关系的调节. 当Tmax > T0 (或TI,TII)时畸形波被快速地完全激发, 热原子团中的原子增加到凝聚体中. 当Tmax = T0 (或TI,TII) 时畸形波激发到最大振幅, 可以维持相当长的时间而不消失, 热原子团中的原子增加到凝聚体中. 当Tmax T0 (或TI,TII)时畸形波没有充足的时间来激发而被抑制甚至消失, 凝聚体中的原子减少. 这些结果在理论和实际应用上具有启迪意义.
    We study a (1+1)-dimensional variable-coefficient Gross-Pitaevskii equation with parabolic potential. A similarity transformation connecting the variable-coefficient Gross-Pitaevskii equation with the standard nonlinear Schrödinger equation is constructed. According to this transformation and solutions of the standard nonlinear Schrodinger equation, we obtain exact rogue wave solutions of variable-coefficient Gross-Pitaevskii equation with parabolic potential. In this solution, a Galilean transformation is used such that the center of optical pulse is Xc = v(T-T0) while the Galilean transformation was not used in previous analysis. By the Galilean transformation, the parameter T0 is added into the solution. It is found that the parameter T0 is important to control the excitations of rogue waves. Moreover, the parameters a1 and a2 in solution are complex parameters which can modulate the behaviors of rogue waves. If they are restricted to real numbers, we can obtain some well-known rogue wave solutions. If the parameter a2 =-1/12, we can have a second-order rogue wave solution. If the parameter a2 is a complex number, the solution can describe rogue wave triplets. Here two kinds of rogue wave triplets, namely, rogue wave triplets I and II are presented. For rogue wave triplet I, at first, two first-order rogue waves on each side are excited, and then a first-order rogue wave in the middle is excited with the increase of time. On the contrary, for rogue wave triplet II, a first-order rogue wave in the middle is initially excited, and then two first-order rogue waves on each side are excited with the increase of time.#br#From these solutions, the controls for the excitations of rogue waves, such as the restraint, maintenance and postponement, are investigated in a system with an exponential-profile interaction. In this system, by modulating the relation between the maximum of accumulated time Tmax and the peak time T0 (or TI,TII), we realize the controls of rogue waves. When Tmax > T0 (or TI,TII), rogue wave is excited quickly, and the atom number of condensates increases; when Tmax = T0 (or TI,TII), rogue wave is excited to the maximum amplitude, then maintains this magnitude for a long time, and the atom number of condensates also increases; when Tmax T0 (or TI,TII), the threshold of exciting rogue wave is never reached, thus the complete excitation is restrained, and the atom number of condensates reduces. These results can be used to understand rogue waves better, that is, besides their "appearing from nowhere and disappearing without a trace", rogue waves can be controlled as discussed by a similar way in this paper. These manipulations for rogue waves give edification on theory and practical application.
      通信作者: 张解放, 719678098@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11375007)资助的课题.
      Corresponding author: Zhang Jie-Fang, 719678098@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375007).
    [1]

    Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic Press)

    [2]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean, Observation, Theories and Modeling(New York: Springer)

    [3]

    Draper L 1965 Marine Observer 35 193

    [4]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054

    [5]

    Dudley J M, Genty G, Eggleton B J 2008 Opt. Express 16 3644

    [6]

    Bludov Yu V, Konotop V V, Akhmedicv N 2009 Opt. Lett. 34 3015

    [7]

    Bludov Yu V, Konotop V V, Akhmedicv N 2009 Phys. Rev. A 80 033610

    [8]

    Yan Z Y 2010 Phys. Lett. A 374 672

    [9]

    Wen L, Li L, Li Z D, Song S W, Zhang X F, Liu W M 2011 Eur. Phys. J. D 64 473

    [10]

    Moslem W M 2011 Phys. Plasmas 18 032301

    [11]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293

    [12]

    Ma Z Y, Ma S H 2012 Chin. Phys. B 21 030507

    [13]

    Tao Y S, He J S, Porsezian K 2013 Chin. Phys. B 22 074210

    [14]

    Wang X, Chen Y 2014 Chin. Phys. B 23 070203

    [15]

    Zhang J F, Jin M Z, He J D, Lou J H, Dai C Q 2013 Chin. Phys. B 22 054208

    [16]

    Hu W C, Zhang J F, Zhao B, Lou J H 2013 Acta Phys. Sin. 62 024216 (in Chinese) [胡文成, 张解放, 赵辟, 楼吉辉 2013 62 024216]

    [17]

    Pan N, Huang P, Huang L G, Lei M, Liu W J 2015 Acta Phys. Sin. 64 090504 (in Chinese) [潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军 2015 64 090504]

    [18]

    Sun Q H, Pan N, Lei M, Liu W J 2014 Acta Phys. Sin. 63 150506 (in Chinese) [孙庆华, 潘楠, 雷鸣, 刘文军 2014 63 150506]

    [19]

    Feshbach H P 1992 Theoretical Nuclear Physics(New York: Wiley)

    [20]

    Li B, Zhang X F, Li Y Q, Chen Y, Liu W M 2008 Phys. Rev. A 78 023608

    [21]

    Zhao L C 2013 Ann. Phys. 329 73

    [22]

    Zhang J F, Yang Q 2005 Chin. Phys. Lett. 22 1855

    [23]

    Pérez García V M, Michinel H, Herrero H 1998 Phys. Rev. A 57 3837

    [24]

    Yang Q, Zhang H J 2008 Chin. J. Phys. 46 457

    [25]

    Ohta Y, Yang J K 2012 Proc. R. Soc. A 468 1716

    [26]

    Akhmediev N, Ankiewicz A 1997 Solitons, Nonlinear Pulses and Beams(London: Chapman and Hall)

    [27]

    Peregrine D H 1983 J. Australian Math. Soc. Ser. B 25 16

    [28]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [29]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [30]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Salomon J 2002 Science 296 1290

  • [1]

    Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic Press)

    [2]

    Kharif C, Pelinovsky E, Slunyaev A 2009 Rogue Waves in the Ocean, Observation, Theories and Modeling(New York: Springer)

    [3]

    Draper L 1965 Marine Observer 35 193

    [4]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054

    [5]

    Dudley J M, Genty G, Eggleton B J 2008 Opt. Express 16 3644

    [6]

    Bludov Yu V, Konotop V V, Akhmedicv N 2009 Opt. Lett. 34 3015

    [7]

    Bludov Yu V, Konotop V V, Akhmedicv N 2009 Phys. Rev. A 80 033610

    [8]

    Yan Z Y 2010 Phys. Lett. A 374 672

    [9]

    Wen L, Li L, Li Z D, Song S W, Zhang X F, Liu W M 2011 Eur. Phys. J. D 64 473

    [10]

    Moslem W M 2011 Phys. Plasmas 18 032301

    [11]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293

    [12]

    Ma Z Y, Ma S H 2012 Chin. Phys. B 21 030507

    [13]

    Tao Y S, He J S, Porsezian K 2013 Chin. Phys. B 22 074210

    [14]

    Wang X, Chen Y 2014 Chin. Phys. B 23 070203

    [15]

    Zhang J F, Jin M Z, He J D, Lou J H, Dai C Q 2013 Chin. Phys. B 22 054208

    [16]

    Hu W C, Zhang J F, Zhao B, Lou J H 2013 Acta Phys. Sin. 62 024216 (in Chinese) [胡文成, 张解放, 赵辟, 楼吉辉 2013 62 024216]

    [17]

    Pan N, Huang P, Huang L G, Lei M, Liu W J 2015 Acta Phys. Sin. 64 090504 (in Chinese) [潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军 2015 64 090504]

    [18]

    Sun Q H, Pan N, Lei M, Liu W J 2014 Acta Phys. Sin. 63 150506 (in Chinese) [孙庆华, 潘楠, 雷鸣, 刘文军 2014 63 150506]

    [19]

    Feshbach H P 1992 Theoretical Nuclear Physics(New York: Wiley)

    [20]

    Li B, Zhang X F, Li Y Q, Chen Y, Liu W M 2008 Phys. Rev. A 78 023608

    [21]

    Zhao L C 2013 Ann. Phys. 329 73

    [22]

    Zhang J F, Yang Q 2005 Chin. Phys. Lett. 22 1855

    [23]

    Pérez García V M, Michinel H, Herrero H 1998 Phys. Rev. A 57 3837

    [24]

    Yang Q, Zhang H J 2008 Chin. J. Phys. 46 457

    [25]

    Ohta Y, Yang J K 2012 Proc. R. Soc. A 468 1716

    [26]

    Akhmediev N, Ankiewicz A 1997 Solitons, Nonlinear Pulses and Beams(London: Chapman and Hall)

    [27]

    Peregrine D H 1983 J. Australian Math. Soc. Ser. B 25 16

    [28]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [29]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [30]

    Khaykovich L, Schreck F, Ferrari G, Bourdel T, Salomon J 2002 Science 296 1290

  • [1] 黄轶凡, 梁兆新. 激子极化激元凝聚体中的二维亮孤子.  , 2023, 72(10): 100505. doi: 10.7498/aps.72.20230425
    [2] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质.  , 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [3] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [5] 陈逸熙, 蔡晓妍, 刘彬, 江迅达, 黎永耀. 准二维空间中的隐秘涡旋量子液滴.  , 2022, 71(20): 200302. doi: 10.7498/aps.71.20220709
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [7] 任金莲, 任恒飞, 陆伟刚, 蒋涛. 基于分裂格式有限点集法对孤立波二维非线性问题的模拟.  , 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [8] 徐园芬. 一维Tonks-Girardeau原子气区域中 Gross-Pitaevskii方程简化模型的精确行波解.  , 2013, 62(10): 100202. doi: 10.7498/aps.62.100202
    [9] 胡文成, 张解放, 赵辟, 楼吉辉. 光纤放大器中非自治光畸波的传播控制研究.  , 2013, 62(2): 024216. doi: 10.7498/aps.62.024216
    [10] 钱存, 王亮亮, 张解放. 变系数非线性Schrödinger方程的孤子解及其相互作用.  , 2011, 60(6): 064214. doi: 10.7498/aps.60.064214
    [11] 套格图桑, 斯仁道尔吉. 构造变系数非线性发展方程精确解的一种方法.  , 2009, 58(4): 2121-2126. doi: 10.7498/aps.58.2121
    [12] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [13] 套格图桑, 斯仁道尔吉. 辅助方程构造带强迫项变系数组合KdV方程的精确解.  , 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [14] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用.  , 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [15] 毛杰健, 杨建荣. 变系数广义KdV方程新的类孤波解和精确解.  , 2007, 56(9): 5049-5053. doi: 10.7498/aps.56.5049
    [16] 卢殿臣, 洪宝剑, 田立新. 带强迫项变系数组合KdV方程的显式精确解.  , 2006, 55(11): 5617-5622. doi: 10.7498/aps.55.5617
    [17] 宗丰德, 戴朝卿, 杨 琴, 张解放. 光纤中变系数非线性Schr?dinger方程的孤子解及其应用.  , 2006, 55(8): 3805-3812. doi: 10.7498/aps.55.3805
    [18] 毛杰健, 杨建荣. 变系数KP方程新的类孤波解和解析解.  , 2005, 54(11): 4999-5002. doi: 10.7498/aps.54.4999
    [19] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索.  , 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [20] 张解放, 陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解.  , 2001, 50(9): 1648-1650. doi: 10.7498/aps.50.1648
计量
  • 文章访问数:  5452
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map